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Abstract

Branch points arise in optical transmissions due to strong atmospheric turbulence, long

propagation paths, or a combination of both. Unfortunately, these conditions are very often

present in desired operational scenarios for laser weapon systems, optical communication,

and covert imaging, which suffer greatly when traditional adaptive optics systems either

cannot sense branch points or implement non-optimal methods for sensing and correcting

branch points. Previous research by Pellizzari presented a thorough analysis of various

novel branch point tolerant reconstructors in the absence of noise. In this research a realistic

model of the Air Force Institute of Technology’s adaptive optics system is developed and

used for the first realistic tests of these branch point tolerant reconstructors. Utilizing

a self-referencing interferometer as the high-order wavefront sensor–this type of sensor

being theoretically immune to scintillation–this effort has extended previous theoretical

work by adding realistic noise effects to the SRI’s measurements before reconstructing the

wavefronts and applying the control law. Not only is the adaptive optics correction shown

to outperform the traditional techniques by as much as 126%, but several new theories

and refinements to existing theories were discovered along the way. This study provides

a foundation to guide hardware implementation in the future, where noise effects will be

present.
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IMPLEMENTATION OF BRANCH-POINT-TOLERANT WAVEFRONT

RECONSTRUCTOR FOR STRONG TURBULENCE COMPENSATION

I. Introduction

Within the Department of Defense (DoD), directed energy (DE) capabilities

have been identified as one of “the key ‘game-changing’ technology-enabled

capabilities that enters service during [the next two decades]” [44]. DE spans a wide

range of potential applications yet has many technological challenges still to be overcome.

Applications of particular interest to the DoD are space situational awareness, laser

communication, and laser weapon systems [44]. Currently, a major obstacle in each

of these applications is accounting for the optical aberrations induced by the random

nature of Earth’s atmosphere. For a point of reference, these same atmospheric effects

are what prompted NASA to spend billions of dollars to design and maintain the Hubble

Space Telescope. To deal with these atmospheric aberrations, there are only a handful of

possibilities. Adaptive optics (AO) utilizes a wavefront sensor (WFS) and reconstructor to

estimate the optical distortions on some reference beam traveling through the atmospheric

path of interest. Subsequently, a wavefront corrector, such as a deformable mirror

(DM), removes the estimated distortions. While there are other methods for dealing with

Earth’s random effects on light, AO is unique in providing real-time, improved imaging

performance, which is essential for the above applications of interest.

Current AO techniques only provide good correction capability for limited operational

regimes. As the optical propagation paths lengthen and/or the atmospheric turbulence

becomes stronger, the propagated light begins to constructively and destructively interfere

with itself [5]. In these circumstances, traditional wavefront reconstruction techniques

1



used to drive the optical correction process are unable to completely estimate the optical

aberrations. These situations are of definite operational interest to the DoD, but most

current AO techniques lose effectiveness in these more challenging situations [31, 39, 42].

The research presented here is aimed at extending the operational regime of AO to

offer improved correction capability when optical interference begins to severely degrade

performance of traditional AO techniques.

1.1 Problem Statement

Branch points arise in optical transmissions due to strong atmospheric turbulence,

long propagation paths, or a combination of both. Unfortunately, these conditions are

very often present in desired operational scenarios for laser weapon systems, optical

communication, and covert imaging, which suffer greatly when traditional adaptive

optics systems either cannot sense branch points or implement non-optimal methods for

estimating and correcting branch points. The overall goal for this research is to transition

previous theoretical work in optimized wavefront reconstruction for strong turbulence

AO to an initial implementation in hardware. To bridge the transition, a high-fidelity

computer model is developed and used in testing the new algorithms prior to hardware

implementation. The work in simulation is shown to be invaluable in further investigating

the behavior of the new wavefront reconstruction algorithms with many unanticipated

lessons and discoveries.

1.2 Key Results

This research primarily investigated the behavior and properties of post-processing

congruence operation (PCO) based wavefront reconstructors. The following list summa-

rizes the contributions made in this research towards bringing the PCO-based reconstructor

to an implementable state.
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• Demonstrated greatly improved strong turbulence AO performance in terms of both

mean Strehl and Strehl variance. The AO performance gains using a PCO wavefront

reconstructor over the traditional least squares reconstructor in terms of mean field

estimated Strehl ratio and Strehl ratio normalized standard deviation are summarized

in Table 1.1. Mean Strehl is a metric of absolute AO correction performance (higher

is better), and the Strehl standard deviation is a metric of correction stability (lower

is better). These results were presented at the 2012 IEEE Aerospace conference.

Table 1.1: Aggregate AO performance gains of all PCO-based wavefront reconstructors

over the traditional least squares reconstructor.

σ2
χ Mean Strehl Normalized Strehl Standard Deviation

0.04 0.2% -2.4%

0.5 19.1% -50.6%

1 126.4% -57.6%

• Identified cause of fades from PCO-based AO and demonstrated a potential solution.

When in closed-loop operation in strong turbulence, PCO algorithms can cause

short-term fades as hopt varies. These drops in Strehl are not caused by the higher-

order control law as much as different tilt components associated with each PCO

rotational realization. The tilt is removed from the higher-order corrections and

instantly dumped on the tracking system; causing the fades. One solution was found

by allowing tilt in the higher-order corrections with conservative controller gains.

This prevented the fades with a slight tradeoff in mean Strehl ratio. Unfortunately, a

realistic system with slight misalignments would require a zero-DC-gain control law

to implement a similar solution. Additionally, this puts higher stroke requirements
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on the DM when tilt is being included. With this new understanding future work in

control design could help mitigate these fades based on the application requirements.

• Demonstrated and developed theory on improved PCO performance in weak

turbulence, low SNR regimes. In weak turbulence, where no branch points are

present, a consistent performance improvement of the PCO reconstructors over

traditional least squares was found. Although the difference is small, this was

completely unexpected based on previous concerns of noise corrupting the PCO

process. A new theory proposed by the author shows in high-noise conditions,

least squares reconstructors can introduce phase anomalies to the AO corrections.

However, the PCO process removes these phase discrepancies introduced by the least

squares reconstruction. These findings will be presented at the 2012 SPIE Optics and

Photonics conference.

• Developed a set of theories regarding phase anomalies in high wavefront gradient

conditions. When localized wavefront phases being reconstructed from an SRI are

greater than π radians between adjacent subapertures, the least squares reconstructor

will alias, leading to a phase anomaly in the reconstructed field. This can be mitigated

using a higher density of SRI subapertures, at the cost of SNR. Alternatively, initial

results show the PCO corrects the phase anomalies introduced by the least squares

reconstruction.

• Formulated an optimized data flow for an AO system using PCO. Started by

diagnosing coupling between the high-order and tracking control systems when using

a PCO-based wavefront reconstructor. Since PCO reconstruction is not a single

matrix operation, decoupling tilt from the higher-order commands required a new

data flow process. The resulting process, illustrated in Fig. 3.4, minimizes matrix

multiplies while maximizing AO effectiveness.
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• Conducted first beam projection simulations using PCO wavefront reconstruction

techniques. Conducted at the end of this research, this establishes a foundation

for future efforts to investigate these novel reconstruction methods with respect

to beam projection applications. Although the initial simulation results identified

needed changes, initial observations indicate promise over traditional least squares

reconstruction. The identified flaws have since been fixed and follow-up simulation

results will be presented at the 2012 DEPS Beam Control Conference.

• Developed an extensible AFIT AO system model for future research. The model

is configurable to varying levels of realism and AO capabilities. Allows isolation

of the research problem at hand without the difficulties of hardware work and the

assumptions of analytical work. This includes the first modeling of realistic fiber

coupling to our specific SRI optical setup – crucial to realistic noise modeling.

1.3 Thesis Overview

Chapter II provides an overview of traditional AO and the optical effects as a result

of the randomized atmosphere. This is followed by an introduction to branch points and

the previous theoretical work in developing an optimized branch-point tolerant wavefront

reconstructor. Chapter III describes a high-fidelity computer simulation developed to

model AFIT’s AO system. This model exposed new insights, crucial to a successful

implementation of the new reconstruction techniques. These insights, discussed in Ch. IV,

offer explanations to a number of previously posed questions, and a new extension of the

theory is presented for beam projection applications. Finally, Ch. V presents a summary of

the challenges overcome, key contributions, and suggested future work from this research

effort.
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II. Background and Related Research

This chapter introduces the current state of AO and previous theoretical methods

for extending AO operability into regimes with scintillation present. An overview of

a typical AO system is given, along with two WFS types - each with unique strengths

and weaknesses. Following this, the detrimental effects of scintillation are explained

with respect to AO. This chapter concludes by discussing previous research in specialized

wavefront reconstruction techniques that attempt to improve upon traditional reconstructors

when branch points are present in the received beacon wavefronts.

2.1 Traditional Adaptive Optics

As light propagates through Earths atmosphere, stochastic variations in temperature

and pressure cause the light to both diffract and refract [5]. This causes beam wander, beam

spreading, and phase fluctuations. A simple example of this can be observed in the apparent

twinkle of stars at night. The Hubble Space Telescope was built to operate beyond the

random atmosphere, where the stars appear as sharp objects. For many applications, these

atmospheric effects severely limit performance. For instance, beam projection systems

rely on efficient delivery of light to a small target area, and optical communication must

maintain a reliable optical link. One remedy is to estimate the atmospheric distortions

and correct for them in real time. This approach is called AO, utilizing a WFS and

reconstructor to estimate the optical distortions on some reference beam followed by a

wavefront corrector to mitigate the estimated distortions.

2.1.1 Atmospheric Turbulence.

Within the atmosphere, light is distorted as it encounters spatially and temporally

randomized variations in the air’s index of refraction. The statistical behavior of these

random variations were first described in the 1940’s by Kolmogorov, when he used physical
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Figure 2.1: Turbulent eddies shown of size L0 down to l0.

insights to describe the velocity of air within the atmosphere [5]. Energy cascade theory

says that kinetic energy injected to a viscous fluid creates large sized turbulent eddies.

These large eddies break down into progressively smaller eddies before the energy is

eventually transferred into heat. The dimensions of these eddies are described by the

inertial subrange, where eddie sizes fall between the inner scale, l0, and outer scale, L0.

Within the inertial subrange, the turbulence can be considered statistically homogenous

and isotropic [5]. Figure 2.1 provides a visual depiction of the energy cascade theory as

kinetic energy is converted down into thermal energy.
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With this physical foundation, Kolmogorov was able to formulate a one dimensional

structure function for wind velocities within the inertial subrange [5]. From this, one

can derive three dimensional power spectrum of the velocity fluctuations within the

atmosphere [17]:

ΦRR(κ) = 0.066ε2/3κ−11/3, (2.1)

where κ is the scalar spatial frequency (in units of rad/m) and ε is the average energy

dissipation rate of the atmosphere. By defining C2
V as the velocity structure constant,

C2
V = 2ε2/3, (2.2)

Eq. (2.1) can be simplified to

ΦRR(κ) = 0.033C2
Vκ
−11/3. (2.3)

The velocity structure constant, with units of m4/3/s2, provides a quantitative evaluation of

the energy within the atmospheric turbulence and is actually based in the formulation of

the velocity structure function [5].

From Kolmogorov’s work, Obukhov [28] and separately Corrsin [8] were able

to extended his statistical model of atmospheric velocity variations, first to potential

temperature, and later to index of refraction variations. This important final leap directly

relates the phase aberrations accumulated by light to the randomized atmosphere. The

resulting three dimensional refractive index power spectrum, known as the Kolmogorov

spectrum, is given by

Φn(κ) = 0.033C2
nκ
−11/3, (2.4)

where n is the index of refraction and C2
n is the index of refraction structure constant. C2

n is

a physical quantity that can be measured for a given location, time of day, and altitude.

Several models of C2
n exist that can be used for simulations of a desired scenario [5].

Figure 2.2 shows the commonly used Hufnagel-Valley model, along with many of the
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Figure 2.2: The Hufnagel-Valley C2
n profile model. Figure from [23].

physical atmospheric layers that drive its behavior. For this research, a horizontal path

was assumed - implying a constant C2
n along the propagation path.

It is important to note the power spectral models for velocity, temperature, and

index of refraction variations all follow similar behavior - easily seen by comparing

Eqs. (2.3) and (2.4). However, as presented thus far, effects outside the inertial subrange

have been ignored. The Kolmogorov spectrum actually assumes an infinitely large outer-

scale and infinitely small inner-scale. This is an assumption made for mathematical

simplicity, but does not match the true atmospheric fluidics. Hill developed a numerical

model based on a more detailed hydrodynamic analysis [20], later adapted to analytic form
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by Andrews [4], given by

Φn(κ) = 0.033C2
n

1 + 1.802
(
κ

κl

)
− 0.254

(
κ

κl

)7/6 exp
(
−κ2/κ2

l

)
(
κ2 + κ2

0

)11/6 , (2.5)

0 ≤ κ < ∞, κl = 3.3/l0, κ0 = 2π/L0. (2.6)

This is sometimes called the modified atmospheric spectrum, where the math to the right

of C2
n has been added to Eq. (2.4) to match the results found by Hill. Most notably, this

spectrum model includes a spectral bump at wavenumbers near the inner-scale size. As

the inner-scale size decreases, light begins to diffract at the smaller eddies [5]. With the

Hill spectrum’s increased content of small eddie sizes, scintillation effects are seen earlier

than a similar propagation using a Kolmogorov spectrum. For this research, the modified

spectrum was used in all numerically propagated optical fields.

Mathematically, Maxwell’s Equations govern all electromagnetic interactions. In

optics, these equations are typically simplified by making three key assumptions:

1. Negligible backscattering and polarization effects.

2. The Markov approximation. Assumes the atmospheric refractive index variations are

delta correlated in the direction of propagation.

3. The paraxial approximation. Assumes all light rays of interest travel at angles very

near the optical axis.

From these simplifications, several methods exist for applying Maxwell’s equations to

propagating an initial field through a random medium. For regimes of weak turbulence,

one such method is the Rytov approximation [5]:

U(r, L) = U0(r, z = L) exp [Ψ(r, L)] , (2.7)

where the initial field is propagated a distance L, U0(r, L) is the field propagated through

vacuum, and it is modified by the complex phase perturbation, Ψ(r, L). Further, the
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perturbation can be split into amplitude and phase components [38]

Ψ = χ + iφ. (2.8)

Several statistical parameters of the propagated field U(r, L) can be found using the

Rytov approximation described above. First, define the field’s mutual coherence function

(MCF),

Γ (r, r′, L) = 〈U(r)U∗(r′)〉

= U(r)U∗(r′)〈exp
[
ψ(r)ψ∗(r′)

]
〉.

(2.9)

By taking the modulus of the MCF, the field’s spatial coherence can be found - also called

the degree of coherence:

γ
(
r, r′, L

)
=

|Γ (r, r′, L)|
√

Γ (r, r, L) Γ (r′, r′, L)

= exp
[
−

1
2

D
(
r, r′, L

)]
,

(2.10)

where D (r, r′, L) is the wave structure function (WSF) [17]. Assuming homogeneity,

isotropy, and a spherically expanding source, the WSF is

Dsph (ρ, L) = 8π2k2
∫ L

0

∫ ∞

0
κΦn(κ)

{
1 − J0

[(
1 −

z
L

)
κρ

]}
dκ dz, (2.11)

where ρ is the distance from the optical axis, k = 2π/λ is the optical wavenumber, J0

is a Bessel function of the first kind, order zero, and Φn(κ) is the atmospheric index

of refraction spectrum model being used. For analytic tractability, the Kolmogorov

atmospheric spectrum is assumed for the following definitions.

By substituting the Kolmogorov spectrum into Eq. (2.11), further substituting that into

Eq. (2.10), and solving for the e−1 point one can find the spatial coherence radius of the

field, ρ0. However, the more commonly used term, r0 = 2.1ρ0, called the seeing parameter,

can be shown to be [5]

r0,sph =

[
0.423k2

∫ L

0
C2

n(z)
( z
L

)5/3
dz

]−3/5

. (2.12)
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This is also referred to as Fried’s parameter after being introduced by D. L. Fried [9].

With respect to AO, r0 is a critical parameter for designing a system. Apertures larger in

diameter than r0 require AO to see additional gains in imaging resolution. Further, the

spatial density of wavefront estimation and correction by an AO system are often related to

r0. To be effective, roughly one WFS subaperture and DM actuator spacing should span r0.

To describe the temporal coherence of the field aberrations, Greenwood analyzed an

ideal AO system with a single pole control filter. He calculated the characteristic frequency

of the system with respect to the ratio of aperture diameter to r0 [19] and derived what is

now called the Greenwood frequency:

fg = 0.254k6/5
[∫ L

0
C2

n(z)v5/3(z) dz
]3/5

, (2.13)

where v(z) is the perpendicular wind velocity along the propagation path.

2.1.2 Wavefront Sensing.

The first step to mitigate the atmospheric effects on light is to be able to estimate the

distortions introduced for a given propagation path and instant in time. This process is

called wavefront sensing and requires some form of reference beacon transmitting light

through the turbulence column of interest. With longer electromagnetic wavelengths, such

as in radar, the fields of interest can be directly measured and compared. Unfortunately, in

optics the short wavelengths and corresponding high frequencies are beyond the detection

range of current electronics. In optics, wavefront estimation requires inferring information

about the received beacon field from other physical processes [41]. The following

subsections give an overview of three such methods.

2.1.2.1 Tilt Tracker.

One of the most simplistic wavefront sensors is a tilt sensor. Shown in Fig. 2.3, this

sensor is meant to estimate the low-order wavefront aberrations of x and y tilt. By focusing

incoming light onto a quadcell detector or sensor array, the deflection of the focused light
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can be calculated by the centroid equations

∆x =

∑N
x=1 xIx∑N
x=1 Ix

− x̄, ∆y =

∑N
y=1 yIy∑N
y=1 Iy

− ȳ, (2.14)

where x and y denote detector column and row positions, x̄ and ȳ are the mean column

and row, and Ix and Iy are the summed detected irradiance values for each column and row.

Using the results from Eq. (2.14), the incoming wavefront’s mean tilt can be determined as

θx = ∆x/ f , θy = ∆y/ f , (2.15)

where f is the focal length of the focusing optic used, shown in Fig. 2.3.

Tilt comprises approximately 87% of all atmospheric aberrations [27], and as such,

using a dedicated fast-steering mirror (FSM) to compensate tilt alone offloads a large stroke

requirement from the high-order wavefront corrector [25]. Further, the tracker can be used

with broadband light, has no moving parts, and is computationally simple to operate. These

reasons make the tracker a very robust wavefront sensor; however, it can only sense the

lowest order wavefront aberrations.

2.1.2.2 Shack-Hartmann Wavefront Sensor.

The Shack-Hartmann WFS uses a tiled array of trackers across the aperture. This

divides the full aperture into subapertures, whose incident wavefronts are assumed to

be roughly planar. With this architecture, local wavefront tilts, or gradients, are sensed

which are then pieced together using a wavefront reconstruction algorithm - discussed in

Sec. 2.1.3. Because of this aperture averaging effect with respect to high order wavefront

aberrations, it is advisable to have at least one subaperture per r0 spacing of the wavefront

being sensed [25].

Figure 2.4 shows a Shack-Hartmann design using square lenslets that focus down on to

2×2 pixel regions on a larger focal plane array. This is a typical design, but other variations

exist for a range of applications. One common design decision is to include a band of

unsensed pixels between subapertures to prevent light from one subaperture ‘spilling’ into
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Figure 2.3: Principles of operation for a tilt sensor where θ is the incoming wavefront mean

tilt with respect to the sensor’s optical axis, d is the lens diameter, f is the effective focal

length, and ∆x is the lateral shift of the focal pattern irradiance.

an adjacent subaperture’s sensed pixels. However, this requires the use of a larger and more

expensive focal plane array and typically increases the required sensor readout time. This

wavefront sensor is very widely used as it shares the same benefits as the tracker does.

The primary downside of this WFS is its high sensitivity to alignment errors. As in most

WFS’s there is a tradeoff to be made between dynamic range of detectable wavefront tilts,

measurement accuracy, signal sensitivity, and speed.

2.1.2.3 Self-Referencing Interferometer Wavefront Sensor.

The Self-Referencing Interferometer (SRI) WFS uses interference effects to directly

sense an incoming field, as opposed to most WFS designs which measure some form of

wavefront gradients. It is based on the point diffraction interferometer (PDI), shown in

Fig. 2.5. The PDI focuses all incoming light to a partially transmissive filter in the focal

plane. The on-axis point in the filter is completely transmissive, acting as a spatial filter.
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Figure 2.4: Diagram of the Shack-Hartmann WFS.

When the light is recollimated, an interferogram between the aberrated input wavefront and

spatially filtered reference wavefront can be seen [24, 34].

Unfortunately, the single interferogram produced by a PDI does not give a direct

means of forming a wavefront estimate, but this is where the SRI extends. Here, the

incoming light is split into two separate paths before being recombined. The first path

is responsible for spatially filtering the incoming wavefronts, similar to the pinhole filter

used in the PDI. However, in the SRI a single-mode fiber is used instead of a pinhole filter.

Differently from the PDI, this filtered reference beam is further split up into separate beams,

and each beam receives a different phase shift – explained below. The second path applies

no filtering or altering of the beam, but is carefully matched in length to the reference
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Figure 2.5: Diagram of the Point Diffraction Interferometer.

legs to maintain a high degree of temporal coherence. Finally, each phase shifted beam is

recombined with the beacon wavefront to form an interferogram for each. The irradiance

pattern of each interferogram is measured on an imaging sensor for use in calculating the

wavefront phase. Figure 2.6 shows a simple layout for an SRI.

A direct measurement of the input wavefront phase can be calculated using the

separate interferograms [11, 34]. Assuming a perfectly coherent source, the m-th sensed

pixel of the n-th interferogram follows

In(xm, ym) =

∫ ∫
Am

∣∣∣Ub(x, y) + Ur(x, y)e−iθn
∣∣∣2 dx dy, (2.16)

where Ub is the input beacon field, Ur is the reference field, and Am is the area of the

corresponding pixel. If we assume the amplitudes of both fields are equal to A/2, Eq. (2.16)

can be shown to equal

In(xm, ym) = A
[
1 + cos(φbxm,ym + θn)

]
. (2.17)

Here, the planar nature of the reference wavefront is clear, while the aberrated input

wavefront remains a function over xm and ym. There are multiple methods for calculating
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Figure 2.6: The Self-Referencing Interferometer.

the input wavefront phase using different numbers of interferograms with different

reference phase shifts applied [11]. For this research, a four bin approach is used. In

this configuration, phase shifts of 0, π/2, π, and 3π/2 are applied respectively to each

reference beam, each interferogram constituting a bin. Following Eq. (2.17), the measured

irradiances of each interferogram become

I1(xm, ym) = A + A cos(φb(xm,ym))

I2(xm, ym) = A
[
1 + cos(φb(xm,ym) + π

2 )
]

= A − A sin(φb(xm,ym))

I3(xm, ym) = A
[
1 + cos(φb(xm,ym) + π)

]
= A − A cos(φb(xm,ym))

I4(xm, ym) = A
[
1 + cos(φb(xm,ym) + 3π

2 )
]

= A + A sin(φb(xm,ym))

(2.18)

From this system of equations, the aberrated input wavefront can be easily calculated

according to Eq. (2.19) and (2.20):

tan(φb(xm,ym)) =
sin(φb(xm,ym))
cos(φb(xm,ym))

=
I4(xm,ym) − I2(xm,ym)

I1(xm,ym) − I3(xm,ym)
(2.19)
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φ̂S RI = Tan−1
(

I4 − I2

I1 − I3

)
. (2.20)

For some applications, including the strong turbulence reconstruction techniques in

Sec. 2.3, it is important to note that the complete field estimate is available with the

relationship

ÛS RI = (I4 − I2) + i (I1 − I3) , (2.21)

from which the field irradiance can be calculated.

Equation (2.20) reveals a remarkable point of interest for real-time AO: using an

SRI, the wavefront phase can be directly measured by merely subtracting the measured

interferograms, one division, and performing an inverse tangent operation on that result.

Further, for a spatial shifting SRI these operations can be performed independently for

each subaperture, meaning that calculations can begin immediately as pixel data from each

interferogram is read in from the sensor(s). To capitalize on this advantage, thought must

be given to the pixel readout order of the sensor(s). The computational time required by

the arctangent operation is a tiny fraction of the full wavefront reconstruction required for a

Shack-Hartmann. However, the output of the arctangent is wrapped [−π, π], which is well

suited for a segmented DM, but is difficult to reproduce over a continuous face-sheet DM. In

the case of a continuous face-sheet DM, one needs to implement a wavefront reconstruction

algorithm in the control system [10,14,30]. Due to the influence functions of a continuous

face DM, sharp wrapping cuts are difficult to reproduce and may even cause damage to

hardware. Unfortunately, the reconstruction process eliminates the efficiency gains seen

over the Shack-Hartmann WFS.

The SRI still has one major advantage over other WFS technologies in that it is nearly

immune to the effects of scintillation seen in strong atmospheric turbulence. A scintillated

field has null points in irradiance over the phase wavefronts that are being estimated by a
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wavefront sensor. At these points of zero irradiance field estimation issues arise in other

wavefront sensing technologies [14]. For the SRI, there may not be any beacon light over

a given subaperture, but the reference beam will have a fraction of the incoming aperture

averaged intensity. Therefore the local phase is directly calculated as

φ = Tan−1
(

I4 − I2

I1 − I3

)
= Tan−1

(
Ire f − Ire f

Ire f − Ire f

)
= Tan−1

(
0
0

)
= 0 (2.22)

In this sense, the SRI is seen to be nearly immune to scintillation; however issues still

arise in coupling light into the reference fiber when these conditions exist. To minimize

coupling inefficiencies, an effective tilt tracking and correction system is essential when

using an SRI. Previous research also investigated using doped reference fibers to achieve

an optical gain for the reference beam path. Previous research by Rhoadarmer found that

just enough gain to overcome sensor readout and quantization noise is ideal [35], but in

practice this is not often implemented. This research seeks to exploit the benefits of the SRI

with respect to scintillation in conjunction with a novel wavefront reconstruction technique,

discussed later in Sec. 2.3.

2.1.3 Wavefront Reconstruction.

It is often necessary to further process the WFS outputs to achieve an unwrapped

wavefront estimate. This process is called wavefront reconstruction. For the SRI, WFS

phase outputs are first sheared into slope space. Other WFS designs typically directly

output wavefront gradients. As slopes, each measurement point is related to the others

through a set of linear equations - called the geometry matrix. This system of equations is

then solved to find the continuous phase wavefront that minimizes the squared error of the

original system of equations. The following subsections describe this process in detail.
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2.1.3.1 Linear Algebra.

The problem of relating wavefront gradient measurements to unwrapped phases can

be written as,

Ax = b, (2.23)

where b is the measured gradients in column vector form of length m, x is an n-length

column vector of the unwrapped phases being estimated, and A is a geometry matrix

relating the two of size m × n. The specific form of A will be discussed in Sec. 2.1.3.2,

but it is a known system parameter. The process of solving for x varies depending on the

specific properties of A. If m = n and A is full rank, then the solution is straight forward as:

A−1Ax = A−1b

x = A−1b.
(2.24)

However, in AO this is rarely the case. Instead, there are traditionally more measurements

than phase points being estimated (m > n). This set of linear equations is overdetermined,

requiring an approach to reduce the parameter space to a best fit solution. Premultiplying by

AT , (ATA) becomes invertible, giving a best fit solution in terms of the minimized squared

error for x [40]:

ATAx̂ = AT b

(ATA)−1(ATA)x̂ = (ATA)−1AT b

x̂ = (ATA)−1AT b

x̂ = A†b

(2.25)

This is the basic process which is used in the following subsections to estimate wavefront

phase from gradient measurements from the WFS. Other methods exist for solving a system

of linear equations such as this; however, the Moore–Penrose pseudoinverse (often referred

to as the least squares pseudoinverse) is the most commonly used algorithm.
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2.1.3.2 Zonal Reconstruction.

Zonal reconstruction uses a simple relative relationship between measured slopes and

the phase estimation points. This relationship is captured by the Geometry matrix, of which

there are two predominant types depending on the way in which a particular WFS senses

wavefront gradients. The Fried geometry is typically associated with the Shack-Hartmann

WFS, while the Hudgin geometry is used with the lateral shearing interferometer (LSI) and

SRI.

Wavefront sensors implementing the Fried geometry sense wavefront slopes at the

center of each subaperture and relate those slopes to phase estimation points at the corners

of each subaperture through Eq. (2.26) and (2.27) [12]. Figure 2.7 shows a 2×2 subaperture

array in the Fried geometry.

(sx−Fried)m,n =
1
2

(φm,n+1 + φm+1,n+1) −
1
2

(φm,n + φm+1,n) (2.26)

(sy−Fried)m,n =
1
2

(φm+1,n + φm+1,n+1) −
1
2

(φm,n + φm,n+1) (2.27)

In this geometry, there are two slope measurements per subaperture, creating 2Q equations

for P phase estimation points. Relating this to the discussion in Sec. 2.1.3.1, this system of

linear equations can be written as

GFφ =

sx−Fried

sy−Fried

 . (2.28)

Alternatively, wavefront sensors implementing the Hudgin geometry estimate phases at

the center of subapertures based on gradient measurements between adjacent subaper-

tures [21]. Figure 2.8 demonstrates a 2×2 subaperture wavefront system. The mathematical

relationship for this geometry is more simplistic than the Fried geometry as,

(sx−Hudgin)m,n = φm,n+1 − φm,n, (2.29)

(sy−Hudgin)m,n = φm+1,n − φm,n. (2.30)
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Similarly to the Fried geometry, this creates 2Q equations for P phase estimations, creating

the system of linear equations:

GHφ =

sx−Hudgin

sy−Hudgin

 . (2.31)

Both Eq. (2.28) and (2.31) can be solved as in Sec. 2.1.3.1 by:

φ̂ = G †s, (2.32)

where G and s are the appropriate geometry matrix and slopes from above.

Further, G † is usually precomputed for the given wavefront sensing geometry being

implemented. This eliminates the need to compute the pseudoinverse at each frame. The

resulting matrix is called the reconstruction matrix,

R = G †. (2.33)

This poses the general least squares wavefront reconstruction problem:

φ̂ = R s. (2.34)

2.1.4 Wavefront Correction.

The process of correcting the aberrated field inputs is heavily driven by the application

of interest. Techniques exist for correction of both field amplitude and phase [2, 7, 36];

however, only phase compensation is discussed further here. Traditional AO uses the

methods described in the previous sections to estimate the phase wavefronts and eliminate

any estimated aberrations. Figure 2.9 depicts the physical process of phase conjugation.

With an accurate estimation of the aberrated input, a conjugate shape is applied to the

surface of a wavefront corrector such that when the light reflects, the wavefront is near

flat. As mentioned previously, the low order aberrations of tilt are often corrected

separately from the higher order aberrations using a combination of deformable mirror

and FSM [25, 41].
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Figure 2.7: The Fried Geometry. Slopes are measured at the center of the subaperture and

are related to the phases at each corner. Slope vectors shown here include both x and y

components for each subaperture.

There are a number of kinds of wavefront correction devices that lend to specific

applications [41]. This research uses a two inch diameter Optics In Motion FSM [3]

and 12 × 12 actuator Boston Micromachines Micro-Electro-Mechanical System (MEMS)

DM [1].

2.1.5 AO Control.

To implement a practical AO system, some form of control scheme is necessary to

derive useful commands to the wavefront correction device(s) based on the estimated input

aberrations [25, 41]. In practice, most AO systems rely on closed-loop control for the

increased robustness when integrating complex beam control systems. Figure 2.10 shows

a high-level control diagram for a tracking system. An aberrated beam entering the AO

system will have some time-varying wavefront tilt, φt. The beam first reflects off of the
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Figure 2.8: The Hudgin Geometry. Slopes are measured between adjacent subapertures,

which are related to the phases at the center of each subaperture.

FSM, which leaves the beam with some residual tilt error, φt−res (near zero for a good

control system in steady-state operation). The residual tilt error is sensed and estimated by

the tracker. The estimated error is then fed into a control law to calculate the next set of

adjustments to the FSM – with the ultimate goal of driving the sensed error to zero. For the

AO system used in this research, a first-order linear filter of the form,

ck = αek−1 + βck−1, (2.35)

is implemented in both the tracking and higher-order control systems. In Eq. (2.35), ck is

the controller output at time step k, ek is the sensed error at time step k, α adjusts the DC-

gain, and β is a servo leakage factor. In a pure integrator setup, β = 1, but slightly lowering

this value decreases sensitivity to any unsensed modes or misregistration errors.

Following the control law, a digital-to-analog converter (DAC) takes the digitized

controller calculations and converts them to a usable analog voltage. This is typically
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Figure 2.9: Wavefront phase conjugation using a deformable mirror.

buffered and/or amplified prior to being sent to the wavefront corrector. The FSM being

used in this research implements its own internal closed-loop controller to maintain the

mirror position to the analog position commands [3]. Based on the position of the FSM

with respect to the optical axis, a tilt is imparted to the incoming beam, and the process

repeats for each frame in time.

2.1.6 Metrics of Performance.

The holy grail of almost any optical system design is to achieve diffraction limited

imaging performance for the application at hand. For this to be the case, there must be zero

wavefront aberrations throughout the optical system - including the imaging path. With

this in mind, the goal of AO is to remove any observable wavefront aberrations from the

light of interest before reaching the science sensors or target. In AO, the primary measure
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Figure 2.10: High-level control scheme for a tilt compensation system.

of correction performance is Strehl ratio. Strehl ratio is defined as [38]

S =

∫ ∞
−∞

∫ ∞
−∞
H( fx, fy) d fx d fy∫ ∞

−∞

∫ ∞
−∞

Hdl( fx, fy) d fx d fy

, (2.36)

where H( fx, fy) is the aberrated optical transfer function (OTF) [18] and Hdl( fx, fy) is the

diffraction limited OTF. Both of these OTF’s are in terms of their spatial frequencies fx and

fy. There are several approximations to this form that better suit various applications or

measurement techniques [25, 38]. For this research field-estimated Strehl is used.

As the name suggests, field estimated Strehl takes a given field and computes an

approximate Strehl without the need to propagate to a focal plane. This is often useful

for efficient numerical simulations or direct Strehl estimation from WFS reconstructions.

It is given by

S =

∣∣∣∫ ∫
U(x, y) dx dy

∣∣∣2
A

∫ ∫
|U(x, y)|2 dx dy

, (2.37)

where U(x, y) is the field within an aperture of area A. For the simulations to follow,

Eq. (2.37) is discretized to the form

S =

∣∣∣mean
[
U(x, y)

]∣∣∣2
mean

[
|U(x, y)|2

] . (2.38)

For hardware performance evaluation, field estimated Strehl is subject to the accuracy of the

wavefront reconstruction. Therefore, when evaluating the effect of different reconstructors

on AO performance in hardware, field estimated Strehl is not a good metric. An alternative
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is to use either the tracking camera measurements or a separate, higher resolution, science

camera to computeH( fx, fy) from the sensed irradiance point spread functions.

2.2 Scintillation and Adaptive Optics

In electromagnetics, when a field interferes with itself, areas of both constructive and

destructive interference result. This is considered a scintillated field [48]. Figures 2.11 and 2.12

show the irradiance of a point source beacon propagated through both weak turbulence and

strong turbulence, respectively. In each case, D/r0 ≈ 2 and λ = 1.55µm, but there are key

differences between the two that should be highlighted:

Weak Turbulence Example

• C2
n = 5 × 10−15, L = 1km

• σ2
χ = 0.01

• Smooth phase function

• Relatively evenly spread irradiance

Strong Turbulence Example

• C2
n = 2.2 × 10−17, L = 244km

• σ2
χ = 1.06

• Phase function contains sharp cuts

• Scintillated irradiance with both peaks

and areas of near zero power.

When describing a given optical path through the atmosphere, weak atmospheric

turbulence generally implies that any transmitted light will only accumulate a randomized

phase as a result of any refractive or diffractive effects. Figure 2.13 shows light being

spherically emitted from a star that is roughly planar upon reaching Earth’s atmosphere.

However, once these planar wavefronts propagate through the turbulent atmosphere, the

wavefronts become aberrated. Strong atmospheric turbulence generally refers to an optical

path that causes not only phase accumulation but also interference effects. For this to

happen, the beam accumulates a phase aberration early in the optical path. With further

27



(m)

(m
)

Irradiance

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
(mJ/m2)

100

200

300

400

500

600

(m)

(m
)

Unwrapped Phase

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
(rad)

−10

−5

0

5

10

15

20

25

(a) (b)

Figure 2.11: Recieved point source irradiance(a) and phase(b) propagated through weak

turbulence.
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Figure 2.12: Recieved point source irradiance(a) and phase(b) propagated through strong

turbulence.
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Figure 2.13: Effects of the randomized atmosphere on planar phase wavefronts.

propagation the aberrated wavefronts begin to constructively and destructively interfere -

causing scintillation in the received light.

Unfortunately for AO, scintillation presents a unique set of problems with respect to

phase conjugation. Fried wrote the first significant publication about scintillation’s effect on

the corresponding phase function [13], and he found that in areas of no light within the field

a new phase component forms. Such points are called branch points. Figure 2.14 shows

an idealized field that has a single branch point at the center. At the branch point there is

zero amplitude, and the phase goes undefined. To make the field continuous in a modulo-

one wave sense, a rotational phase emanates outward from the branch point, producing

the corkscrew shape. Expanding to the general case, Fried showed that all branch points

create a rotational phase field which is in addition to the generally associated irrotational

wavefront aberrations from propagations through the turbulent atmosphere [13]. This can
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be written simply as

φ = φirr + φrot, (2.39)

where φrot is the rotational component of the phase due to branch point effects and φirr

is the irrotational component typically associated with atmospheric optical propagations.

Note that in weak turbulence, φrot = 0 because there are generally no branch point effects

present.

As seen in the theoretical branch point of Fig. 2.14, the rotational phase is defined

over a one wave region. This, combined with the rotational nature, requires a sharp cut

emanating outward from the branch point along the wrapping edge of the one wave window.

This is called a branch cut and can be seen in parts of the reconstructed phase in Fig. 2.12.

Branch cuts always link pairs of branch points or travel from one branch point to outside

the pupil region. The rotational phases are defined on an arbitrary one wave region, and the

2π window can be shifted without changing the modulo-2π congruence of the wavefront.

However, doing so moves any branch cuts. For example, the rotational phase of Fig. 2.14

is windowed between −π to π. If the window is changed to 0 to 2π, the wrapping boundary

would move to the opposite side of the corkscrew, and the branch cut would shift sides

of the field. Note that shifting this window by integer multiples of 2π give equivalent

placements of the branch cuts. Likewise, if the wrapping window is kept fixed, a uniform

piston added to the entire field has the same effect [31,45]. This latter technique is preferred

for this research simply due to computational efficiency and can be written as

φ′rot =W
[
φrot + h

]
, (2.40)

where φ′rot is still modulo-2π equivalent to φrot. Figure 2.15 gives a graphical example of

this process.

Unfortunately for most AO, the wavefront corrector used is a continuous face-sheet

design. These correctors will inevitably have a fitting error along any branch cuts in the
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Figure 2.14: Theoretical rotational phase function surrounding a centered branch point in

a propagated field.

field being conjugated. The following section poses a strategy to minimize the impact of

branch cut fitting errors from the wavefront corrector.

2.3 Wavefront Reconstruction in Strong Turbulence

As described in Sec. 2.1.3, raw WFS measurements usually need reconstruction prior

to correction. Herein lies a major problem for traditional AO techniques when branch

points are present in the observed field. Any reconstruction matrix calculated using the

least squares pseudoinverse from Eq. (2.25) cannot reconstruct a rotational component [13].

This is not a function of the particular WFS/DM geometry chosen – it is instead a behavior

of the Moore-Penrose pseudoinverse. Figure 2.16 demonstrates this behavior.

Fortunately, this is not a dead end. There are actually a number of algorithms one can

use to recover φrot. Pellizzari provides the most complete comparison to date with a focus
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Figure 2.15: Effects of adding a uniform piston, h, to the rotational field while maintaining

a fixed wrapping window. Modulo-2π congruence is maintained, but the branch cut moves

as h changes.

on the AO application [31]. Of the many algorithms from a range of science applications,

the primary constraint that must be considered for use in AO is computational efficiency.

The wavefront must be reconstructed in real-time at the frame rate of the WFS - often in

the kilo-frames per second. Pellizzari used this to narrow down his evaluation to fifteen

reconstructor options for which he did a more thorough comparison. The research that

follows builds from his conclusions. In the subsections below, the most promising real-

time branch point-tolerant wavefront reconstructors are described.

2.3.1 Post-Processing Congruence Operation Reconstruction.

The most promising class of algorithms is based on a post-processing congruence

operation (PCO) to find and add back in the rotational portion of the field [31, 45]. This

32



Least Squares Reconstructed Phase [rad]

10 20 30

5

10

15

20

25

30

35
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Input Field [rad]

10 20 30

5

10

15

20

25

30

35
−3

−2

−1

0

1

2

3

Figure 2.16: Applying a least squares reconstructor to a rotational field.

research chose the SRI because it directly senses the wavefront phase - including any

rotational components present. We can thus formulate the problem in terms of Eq. (2.39)

and the PCO technique as

φ̂irr = φLS = RLS Γ (φS RI) ,

and

φ̂rot =W
[
φS RI − φirr

]
,

(2.41)

where φS RI is the SRI’s raw phase measurement and the Γ(φ) operator finds the x and

y gradients of φ, consistent with the reconstructor geometry being used [13, 15, 31, 45].

Substituting Eq. (2.41) into Eq. (2.39) gives

φ̂PCO = φLS +W
[
φS RI − φLS

]
. (2.42)

This process maintains the traditional least squares phase reconstruction technique for the

irrotational phase component and finds the modulo-2π equivalent rotational phase out of

the original measurement. This process adds only a very small computational overhead to

gain the rotational component reconstruction.

There is further room for improvement on the basic PCO process. As discussed in

Sec. 2.2, the branch cut locations can be varied by applying a piston to the rotational field
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prior to wrapping Eq. (2.40). The subsections that follow take the general PCO algorithm

and attempt to optimize the particular realization of rotational phase with respect to the

branch cut locations by seeking an optimal piston addition, h.

To compare realizations of rotational phase, a cost function posed by Venema [45]

and refined by Pellizzari [31] called intensity weighted cut length (IWCL) is used.

IWCL first locates any branch cuts in a rotational field–again by shearing the raw phase

to get wavefront gradients, and searching for sharp gradients. It then integrates the

SRI’s estimated field irradiance from Eq. (2.21) along the estimated cuts. Results from

both Venema and Pellizzari show high negative correlation between IWCL and Strehl

ratio [31, 45]. This research deviates slightly from the previous IWCL implementations

in not normalizing the integrated IWCL by the total field irradiance. While the normalized

IWCL is useful for comparing specific test cases, there is no advantage to the additional

computations in a real-time AO system.

By seeking to minimize IWCL, branch cuts are moved towards areas of minimized

irradiance, thus keeping the effects of DM fitting errors along the cuts to a minimum.

This is only one cost metric – others can be chosen based on the application of interest.

One alternate was developed for beam projection applications, which is presented later in

Sec. 4.6.

2.3.1.1 LSPV.

Least squares principle value (LSPV) was first published with respect to AO by

Venema and Schmidt [46]. LSPV+n takes the one wave range of possible h offsets, and

divides it n times:

heval =

[
0 :

2π
n

: 2π
)
. (2.43)

While the definition above splits heval equally across the one wave range, there are variants

that do not necessarily follow this constraint. The LSPV+n reconstruction process then
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evaluates all n values of heval in terms of IWCL to determine the best φrot:

φ̂LS PV+n = φLS +W
[
φS RI − φLS + hopt

]
, (2.44)

hopt = argminheval

[
IWCL (φrot(heval))

]
. (2.45)

LSPV+1 and LSPV+4 were the primary algorithms investigated in this level of PCO

optimization. LSPV+1 may seem like a poor choice, but with only one value of heval, there

is no need to compute IWCL - giving a computational advantage. LSPV+200, or other

large n, can be used to test for the true ideal hopt for a given field but is not suggested for

real-time implementation due to the computational requirements and diminishing marginal

gains. Figure 2.17 shows one particular LSPV+4 execution. It is obvious that some values

of heval are less optimal than others.

2.3.1.2 Iterative Probing.

Proposed by Pellizzari [31], this algorithm starts a narrow LSPV+5 search about the

midpoint between the previous frame’s hopt,k−1 and 〈hopt〉. In this case, the narrow LSPV+5

search evaluates

heval1 =

[
−0.3 −0.15 0 0.15 0.3

]
+

hopt,k−1 + 〈hopt〉

2
waves. (2.46)

The calculated hopt,k from the above LSPV+5 search serves as a seed for a second search.

The new search narrows the range of heval for a finer investigation of the IWCL parameter

space about hopt,k:

heval1 =

[
−0.07 −0.04 0 0.04 0.07

]
+ hopt,k waves. (2.47)

Pellizzari motivated this by showing that the IWCL-space is roughly parabolic. This

iterative probing method allows for further precision with still minimal additional

computational requirements.
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Figure 2.17: These plots depict the rotational portion of a wavefront in radians as a piston

shift is applied [45]. Branch points are marked by X’s and O’s based on their respective

charge, and branch cuts are highlighted with white. The non-unique nature of the rotational

phase is highlighted by applying piston: π (a), π/2 (b), 0 (c), and −π/2 (d). Plots adapted

from [45].

2.3.1.3 Histogram Search.

Also proposed by Pellizzari [31], this algorithm minimizes the area of φrot near the

wrapping boundaries. It first calculates a histogram of the φrot phase values. From there, it

calculates h′opt as the shift requried to place the minimally sized histogram bin at the nearest

wrapping edge. Additionally, a narrow LSPV+3 search explores the IWCL parameter-

space about h′opt to arrive at the final hopt.
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2.3.1.4 Brent’s Method.

The final PCO algorithm posed by Pellizzari utilizes what is known as a Brent’s

Method [33]. Unlike the iterative probing algorithms above, this type of search algorithm

minimizes the required evaluations of the cost function for the optimization problem at

hand. For this, it means fewer evaluations of IWCL through a golden ratio search of the

h parameter-space. Knowing that the IWCL parameter-space is roughly parabolic, this

algorithm recursively refines a parabolic fit by adjusting h. Each parabolic fit uses four

data points, from which the search algorithm divides that search range in half. Successive

searches maintain a ratio between cost function evaluation inputs such that previous IWCL

evaluations are reused as the search narrows.
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III. High-Fidelity Simulation Development

This chapter highlights the development of a Matlab model of AFIT’s own AO testbed.

From the start of development, this was intended to be a high-realism wave-optics based

simulation of the true system dynamics. The following sections highlight the development

decisions, lessons learned, and configuration capabilities for the simulation model.

The simulations were developed in the Matlab programming environment. As this is

a discrete numerical model, careful consideration was given to adequate spatial sampling

of the electromagnetic fields involved. Although this discussion does not cover the theory

behind numerical simulation of wave-optics, this information can be found in Schmidt [38].

Additionally, Matlab toolboxes, WaveProp and AOTools, were used to augment the

methods proposed by Schmidt. These toolboxes were developed by the Optical Sciences

Company (tOSC). Much self-authored functionality and integration code was developed

for this research and is described in the sections that follow.

3.1 AFIT Adaptive Optics System

AFIT’s AO system testbed was built as a multi-purpose platform on which to give a

hands-on experience for Air Force students being introduced to AO. As it has evolved, it has

become an extremely capable and configurable platform for advanced AO research [37].

Despite this, having a simulation model on which to conduct initial research, where many

variables of experimental work are idealized, creates a powerful time and money saving

tool. The following subsections introduce the physical system and how it was translated

into the computer model.

3.1.1 Hardware Specifications and Setup.

Built by SAIC, AFIT’s AO system consists of two independent control systems. As

described in Sec. 2.1.2, a tracking system handles the low order tilt wavefront aberrations,
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while a separate high-order system senses and corrects the remaining wavefront errors.

Figure 3.1 shows the optical layout of the AO system which can be fed by anything that

relays to an entrance pupil at the FSM. As is currently setup, the beam diameter at the FSM

is 14mm before being reduced by a factor of three in a 4- f relay to the DM. From then

on, the beam remains at 4.67mm and is relayed once more to the sensor entrance pupil

which precedes the Shack-Hartman WFS beam-splitter. This size gives ten DM actuators

across the beam as shown in Fig. 3.2. A border of actuators remain that are slaved to

the actively driven ‘master’ actuators. Slaving unsensed actuators minimizes influence of

adjacent actuators at the beam edges on the actively driven actuators [43]. For this research,

the Shack-Hartmann WFS is being completely bypassed and going unused. Instead, the

higher-order WFS is a 19×19 subaperture spatial SRI operating at 1.9Kfps with one frame

of latency from sensor exposure to DM commands out. The tracking sensor has a field

of view of 1.8mrad over a 32 × 32 sensed pixel array operating at 4.76Kfps, again with

roughly one frame of delay from exposure to FSM command out. Note that this field of

view is referenced to the AO system entrance pupil, not the demagnified beam entering the

actual tracker.

This spatially-oversampled WFS-DM geometry is important in properly reconstruct-

ing the wavefront with a phase-only WFS when there is potential for large phase differences

between WFS subapertures [6]. Such large phase differences are a natural consequence

of branch cuts within the field. Therefore, a high-resolution wavefront reconstruction is

formed from the 19 × 19 SRI measurements, which is then downsampled to the DM res-

olution prior to the control-law calculations. It is important when downsampling only to

include phase estimates within the active aperture, otherwise the outer edge of downsam-

pled points will always be artificially biased towards zero.

Simulating the hardware system allows for a few simplifications. First of all, there is

no need to simulate any optical relays of the entrance pupil. Instead, all phase corrections
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Figure 3.1: Layout of AFIT’s AO system testbed.

Figure 3.2: Geometry of SRI subapertures (dotted squares) to master DM actuators (blue

dots) the beam extent is shown in red.
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are performed on the same field, which is then appropriately scaled in irradiance before

being sensed by the tracker and SRI. Of course, this assumes a perfectly aligned and zero

aberration optical system; however, if one wanted to add either effect, it would be a simple

addition.

In simulation, a one meter telescope collects light from the optical propagations. This

is not as critical as D/r0 is, where D is the entrance aperture diameter. As discussed before,

the ratio of wavefront corrector size to Fried’s parameter, r0, is an important consideration

when designing a system. For this simulation work, any atmospheric conditions can be

generated, leaving the choice of entrance aperture size somewhat arbitrary. The entrance

telescope is simulated to have a focal length at the simulated target distance for each

scenario, giving a collimated output beam to the AO system.

The telescope also demagnifies the one meter entrance pupil to a 4.67mm exit pupil.

This design decision ignores the one-third demagnification from the FSM to DM in the

physical system but increases the simulation simplicity. Due to the changed angular

magnification at the simulated FSM, the only change between the simulations and physical

system is the final gain coefficient between the tracker controller to the analog FSM

voltages. Since no inertial effects of the FSM are simulated, this gain discrepancy has no

effect on the fidelity of results. To justify excluding simulating inertial effects of the FSM,

a comparison between the FSM command frequency spectra (at the highest Greenwood

frequency tested) and the physical FSM’s measured frequency response showed only a

small content approaching the FSM’s roll-off frequency.

With the optical system design handled, consideration of the separate control systems

must be paid. Often in computer simulations of AO systems, the tracking system and high-

order system operate at integer frequency multiples of one another (i.e. Tracking at 4Kfps,

High-order at 2Kfps); however, this is not often the case for physical systems. This is an

issue when calculating the optical fields that feed the system. As these are computationally
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very expensive to generate, a minimum number of frames should be sought. The solution

used in this research was to calculate separate lists of sampling times for each control

system based on their respective sampling rates. With those, a unique merge of the two

lists is performed, while maintaining a table that links each point in time to which sensor(s)

is active. This resulting list is not uniformly spaced in time, but it does not have to be.

Knowing the turbulence wind speeds and point in time, WaveProp is able to generate the

propagated fields without issues. The listing below gives pseudo code through this process

for additional clarification.
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1 % Load propagated fields

2 % Setup sensors and correctors

3

4 for currFrame = 1:numFrames

5 % Apply simulated telescope

6 % Apply last FSM and DM corrections

7

8 if SRI active

9 % Detect, reconstruct, downsample, control law, filter

10 end

11 if TRK active

12 % Detect, threshold, centroid, control law

13 end

14

15 % Calculate Strehl

16 end

With the above system coded up, initial simulations began. Unfortunately, the first set

of Strehl plots looked like the left subplot of Fig. 3.3. As the figure shows, initially the AO

system is completely off, and the Strehl is roughly zero. The tracking system turns on 0.01s,

and the Strehl picks up to roughly 0.1. At 0.02s, the high-order system turns on, leading

to a good initial improvement, but the system quickly goes unstable. Upon investigation of

the DM commands, it was obvious that tilt was dominating the DM corrections.

While not apparently an issue in the previous work by Pellizzari where the separate

control systems operated at the same frequencies, here the higher-order and tilt control

systems create a condition where they fight each other. As there is always going to be a

slight residual correction error from the tracking system, the SRI detects this and tries to

compensate, although at a slower sampling rate. The faster tracking system will have time

to sense and correct for the same residual that the higher-order system is still processing.
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When the control loop gains are high enough, this behavior can quickly overwhelm the

limited stroke of the DM and even drive the whole AO system unstable.

The solution is simple: ensure there are no common correction modes between any

control loops. In this case, project out tilt from the higher-order system. In traditional AO, it

is common to augment the traditional least-squares reconstructor matrix with a tilt-removal

operation, such that the reconstructed wavefront has no tilt components. The process for

this is shown in the code below:

1 %% Remove Z−Tilt:

2

3 % Generate arbitrary orthogonal tilted wavefronts:

4 [xt,yt] = meshgrid(1:nDMacts);

5 % Zero−mean:

6 xt = (xt − mean(mean(xt)));

7 yt = (yt − mean(mean(yt)));

8 % Only consider the active aperture:

9 xt = xt(activeMask == 1);

10 yt = yt(activeMask == 1);

11 % Transform from 2D−space into Reconstructor−space

12 % and normalize the tilted wavefronts:

13 XZ = xt*xt'/(xt'*xt);

14 YZ = yt*yt'/(yt'*yt);

15 % Create the Tilt−Removal Operator Matrix:

16 P = eye(sum(activeMask(:))) − XZ − YZ;

17

18 % Combine to form a tilt−removed Reconstructor:

19 R tr = P * R;
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Unfortunately, with the PCO-based reconstruction techniques, this process is not as

simple. As outlined in the previous chapter, the PCO process is

φ̂PCO = φLS +W
[
φS RI − φLS

]
. (3.1)

However, to make φ̂PCO tilt-removed, two forms of least-squares reconstruction are needed:

φ̂PCO = φLS−tr +W
[
φS RI − φLS−ti

]
, (3.2)

where φLS−tr is a tilt-removed least-squares reconstruction while φLS−ti retains tilt. This

does indeed give a tilt-removed reconstruction, but it requires the calculation of two least-

squares reconstructions rather than only one.

A better solution exists. Realizing that the control law follows the reconstruction,

a design decision exists on where to calculate actuator slaving. Often, this is rolled in

with the least-squares reconstructor; however, this technique will not work with the PCO

calculation of φrot. Additionally, the slaving operation should ideally be the last calculation

prior to sending the DM commands out. So a tradeoff can be made in this case: only

calculate a single, tilt-included, least-squares reconstruction which gives a tilt-included

PCO reconstructed wavefront. Downsample the reconstruction, send it through the control

law, and apply one final matrix operator which removes piston, removes tilt, and applies

slaving. This is the optimal data-flow process for a PCO reconstructor; shown in Fig. 3.4. In

total, this requires just two matrix multiplies – one for the least-squares reconstruction and

one for the final filtering. With the tracking and higher-order control systems decoupled,

performance improved greatly. This is seen in the right plot of Fig. 3.3.

3.1.2 System Radiometry.

With the simulation model framework mostly in place, focus could be turned to

modeling radiometry throughout the optical system. This is crucial if noise effects are

going to be accurately simulated, as photon shot noise is signal-dependent [17] and other

noise sources are only meaningful in relation to the signal level.
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Figure 3.3: The effects of neglecting tilt decoupling on Strehl ratio. Right plot shows tilt

properly decoupled over the same input wavefronts for comparison.

SRI 

(wrapped, w/ tilt) 

Reconstruct & 

Downsample 

(w/ tilt) 

Control Law 

(low pass filter 

per pixel) 

Remove 
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Slave DAC to DM 

(Actively illuminated area only) 

Figure 3.4: Optimal process flow for a PCO based reconstruction algorithm.
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3.1.2.1 Radiometric Assumptions.

In the physical AO system, power can be varied to each signal path using polarized

beam splitters preceded by adjustable half-wave-plates [37]. This requires the input light

be initially filtered by a polarization analyzer. For the simulation work, no polarization

effects are modeled - only the power splitting ratios. In this sense, the input light for the

simulations would be equivalent to just after the initial polarization analyzer on the physical

table.

A number of assumptions were made in this radiometric model:

1. No losses due to reflections.

2. No losses due to dispersion or misalignments.

3. Ideal beam splitters.

Realistically there is a small loss through the system despite the anti-reflective coatings

used on all optics. Additionally, the beam splitters have a finite extinction ratio. This is

relevant for the beam paths that theoretically receive no light. Realistically, the Shack-

Hartmann and auxiliary beam paths receive a small percentage of the light.

Additionally, realistic sensor models were created in WaveProp based on the camera

datasheets from Goodrich. For both the tracker and SRI, a Goodrich SU320-KTSW sensor

is used, with the key specifications shown in Table 3.1.

3.1.2.2 Realistic SRI Reference Fiber Coupling.

Previous simulations assumed the SRI had a constant fiber coupling coefficient into

its single-mode reference fiber, regardless of the input wavefront condition. This is a

rough approximation for quick evaluation but is insufficient for a realistic noise analysis,

determining low signal performance, and examining transient behavior before the AO

system reaches steady-state.
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Table 3.1: Goodrich SU320-KTSW Sensor Specifications

Resolution 320 × 256†

Pixel Pitch 25µm

Quantum Efficiency >0.65††

Full Well e− 750,000e−

RMS Read Noise 183e−†††

† Can address a smaller rectangular region of the array for increased speed.
†† Actual quantum efficiency at 1550nm is likely greater, but 0.65 was used for these
simulations. A sensor calibration can experimentally determine this value [22].
††† Based on correspondence with Goodrich technicians for a FPA gain of one.

Based on previous work by Wheeler [47], frame-by-frame fiber coupling efficiency

and exit mode shape can be calculated. Using the physical optic and fiber parameters of

AFIT’s SRI hardware, the single mode accepted into the fiber (LP01) is back-propagated to

the SRI entrance pupil. With this, the input aberrated beam is projected onto the known

back-propagated LP01 fiber mode, giving a realistic frame-by-frame coupling coefficient.

Similarly, the exiting LP01 fiber mode is a magnified version of the input mode, based on

the specific re-collimating optics used after the output of the fiber. This output mode is

scaled by the current frame’s coupling coefficient as

U f iberout(k) =
(
Uinput(k), U01−in

)
U01−out, (3.3)

where (·, ·) denotes an inner product, k represents the current time step, Uinput is the input

aberrated beam of the SRI reference leg at time step k, U01−in is the normalized back-

propagated LP01 mode that is coupled into the fiber, and U01−out is a normalized version

of the collimated fiber exit mode. This operation captures the stochastic variations in

coupling efficiency, while other effects like Fresnel reflections are treated separately and

deterministically. As is shown in Figs. 3.5 and 3.6, fiber coupling is particularly important
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in modeling transient behavior immediately after closing the loop in strong turbulent, low

signal situations.

3.1.2.3 Power Splitting.

As shot noise is dependent on the signal level at the detector and the other noise

sources are only meaningful relative to the signal level, careful work had to be taken to

ensure proper radiometry throughout the simulated AO system. This problem was initially

approached by adjusting the power splitting between tracker and SRI to achieve roughly

equivalent signal levels on each detector. For the tracker this is straight forward, but the

SRI presents a challenge with the input-dependent fiber coupling. For this calibration,

a low-Rytov turbulence scenario was used to determine the optimum tradeoff in power

splitting. Figures 3.5 and 3.6 illustrate this tradeoff. Before the AO system is engaged,

the fiber coupling is near zero. First the tilt system is engaged, giving a very slight

increase in coupled light. This coupled signal must be sufficient to form the SRI wavefront

estimate, otherwise the higher-order control loop may not successfully close when engaged.

When the higher-order system engages, coupling immediately jumps as the DM starts

correcting. This is shown in Fig. 3.5 when the fiber power becomes stronger than the

signal power. However, as fiber coupling efficiency is directly correlated with Strehl ratio,

stronger turbulence degrades the power coupled into the SRI reference fiber, as seen in

the medium-Rytov case of Fig. 3.6. A balance must be struck between supplying enough

power to initially engage the higher-order control loop while not taking too much power

from the signal leg. The power splitting can thus be optimized for the expected atmospheric

conditions, or as in this research, a general compromise was found that accommodates a

wide range of scenarios. Figure 3.7 shows the power splitting breakdown through the

AO system that was empirically determined, and as it turns out matches up closely to the

physical AFIT hardware setup.
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Figure 3.5: SRI reference fiber coupling as the AO system starts up. The left plot shows

the power in the fields for both the signal and reference (labeled Fiber Power) legs through

the SRI. The right plot calculates the fiber coupling efficiency over time. Atmospheric

conditions are fg = 20Hz, Rytov number = 0.04.
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Figure 3.6: SRI power splitting between reference and signal legs on the left using a

LSPV+4 reconstructor for turbulence with a Rytov number of 0.488 and Greenwood

frequency of 20Hz. The resulting fiber coupling is shown on the right.
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Figure 3.7: Approximate power splitting within the simulated AO system. The SRI’s

interferograms are represented with I1 through I4. Ir and Is are the reference and signal

paths, respectively. The fiber loss will depend on the instantaneous Strehl ratio of the field

entering the SRI.
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3.1.3 Sensor Noise Effects.

With the system radiometry setup, focus can be turned to the noise sources. For this

discussion, focus is on a single pixel of one SRI interferogram, as we are most interested

in noise effects relating to the reconstruction performance. However, it should be noted

that the balanced power distributions and same detector models used in the SRI and tracker

yield roughly equivalent SNR’s. Noise sources analyzed include photon shot noise σ2
shot,

detector readout noise σ2
read, and ADC quantization noise σ2

quantization so that the total system

noise is given by

σsys =

√
σ2

shot + σ2
read + σ2

quantization. (3.4)

Photon shot noise follows a Poisson distribution and is only a function of the signal

strength. Its noise contribution to Eq. (3.4) can be expressed as [35]

σ2
shot = K

=
ηqe

Nbins

[
TintApx

(Is + ηcIr)
2

] (3.5)

where K̄ is the mean photoelectron count for a given pixel, ηqe is the detector quantum

efficiency, Nbins is the number of SRI interferograms captured simultaneously, Tint is the

detector integration time in seconds,Apx is the area of one pixel in square meters, ηc is the

mean coupling efficiency into the single-mode fiber, and Is and Ir are the irradiances for the

signal and reference legs of the SRI, respectively. As this is an interferogram, Is and Ir are

averaged, rather than simply adding their signals.

As mentioned in Table 3.1,

σ2
read =

(
183e−

)2
. (3.6)

This read noise number varies depending on the gain and calibrations used, but this gives

a rough middle ground for an InGaAs camera in this class and represents one bit of digital

resolution. This sensor uses a 12bit ADC to quantize the analog photocurrents. Assuming
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a rounding ADC, the quantization noise can be expressed as [35]

σ2
quantization =

1
12

LSB2

=
1

12
(
183e−

)2
,

(3.7)

where there are 183 photoelectrons per least significant bit (LSB) of the 12bit ADC.

With all of the noise sources defined, the challenge becomes to define a meaningful

SNR to test AO and reconstructor performance. The noise is now defined in terms of

photoelectrons for an individual pixel of one interferogram. The signal will thus be defined

as the average number of photoelectrons incident on one pixel over the same integration

period. Making use of Fig. 3.7, roughly 5% of the entrance power reaches the pixel from

both the signal and reference legs of the SRI. Since this is an interference pattern, the

combined signal could range between 0-10% with a mean about 5%. Therefore, the signal

estimate is 5% of the input power. Note that this decreases if Strehl performance degrades

for any reason. Putting Eqs. (3.4)–(3.7) together with the previous definition of signal, SNR

can be defined as

SNR =
K√

σ2
shot + σ2

read + σ2
quantization

(3.8)

SNR =
K√

K + (183e−)2 +
(

1
√

12
183e−

)2
. (3.9)

Using the above equation for SNR, the required input beam power can be calculated

for 1.55µm light. Note that these SNR values are not in decibels. In the extreme, before

the higher-order loop is closed, actual signal levels can be much lower than these estimates

due to poor fiber coupling, as seen in Figs. 3.5 and 3.6. Because of this, initially closing the

loop has been found to be the primary obstacle for the SRI-based AO system to overcome.

Ensuring the tracking system is closed before trying to close the higher-order loop is

essential in low signal conditions.
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3.2 Atmospheric Propagations

While not the primary focus of this research, realistic aberrated optical inputs are

needed to test the AO system over. An ideal point source beacon at a wavelength of 1.55µm

was used in all cases. As mentioned before, care was taken in ensuring adequate spatial

sampling of the wavefronts using methods from Schmidt [38]. WaveProp also alerts users if

inadequate sampling is detected. Table 3.2 lists the spatial sampling used in this research,

where σ2
χ is the Rytov number, d/r0 is the ratio of the DM actuator spacing to Fried’s

parameter, δsrc is the beacon source plane grid spacing, δAOsys is the receive plane grid

spacing entering the simulated telescope, N Grid Points is the number of discrete spatial

samples per side of the simulated field, C2
n is the index of refraction structure constant along

the propagation path, and Dz is the propagation path length.

3.2.1 Parameter Exploration.

To fully characterize the AO system performance, a wide parameter-space was

investigated. Most importantly, this research evaluates the effect of an increasing Rytov

number on reconstruction performance. Additionally, for each Rytov number, a range of

Greenwood frequencies and SNR’s are investigated. Finally, two r0’s were considered at

d/r0 = 1 (Challenging) and d/r0 = 1/2 (More realistic). This is all summarized in Fig. 3.8.

Table 3.2: Atmospheric propagation setup parameters.

σ2
χ d/r0 δsrc [mm] δAOsys [mm] N Grid Points C2

n Dz [km]

0.04 1 0.4 8 1024 2e-14 1

0.5 1 4 4 2048 1e-15 20

1 1 5 7 2048 4e-16 50

0.5 0.5 9 13 1024 7.88e-17 80

1 0.5 12 15 2048 2.2e-17 244
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•  Horizontal Propagation of a point source 

•  Hold 𝑑 𝑟0  constant in all cases: 1, ½  

•  Vary Rytov Number: 0.04, 0.5, 1 

•  Vary Greenwood Frequency: 20, 40, 60, 80, 100Hz 

Lead to various combinations of 𝐷𝑧, 𝐶𝑛
2, and 𝑉𝑤𝑖𝑛𝑑 

𝐷𝑧 

𝑉𝑤𝑖𝑛𝑑
 

 

𝐶𝑛
2 

Figure 3.8: Point source atmospheric propagation setup.
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IV. Simulation Results

This chapter first presents a compiled set of simulation results from the various

reconstruction methods introduced in Ch. II. Obvious performance improvements from the

traditional least squares reconstruction approach are seen, especially as turbulence strength

increases. While that was the original intended scope for the simulation portion of this

research, further investigations led the author to several additional insights on PCO-based

reconstruction that greatly clarify previous questions and hypotheses. These new findings

include least squares phase anomalies due to gradient aliasing, the cause and potential

solutions to sharp fades when using PCO reconstruction in strong turbulence, and refined

behavior models of hopt during closed-loop operation. This chapter concludes with an

extension of the PCO technique in strong turbulence to beam projection applications.

4.1 Reconstructor Performance

Due to the large number of simulations run, this section presents a summarized set

of the raw results. While exploring the effects of SNR and Greenwood frequency were

informative along the research pathway, the more general performance trends between

each reconstruction technique can be explored without these details. The tables that

follow present averaged statistics of the field-estimated Strehl ratio from each one second

simulation run. For each Rytov number and reconstructor combination, all simulations

were grouped together to calculate the mean, standard deviation, and normalized standard

deviation of the field-estimated Strehl ratio. The mean Strehl ratio measures absolute

AO correction performance, and the standard deviation of the Strehl ratio measures the

stability of the AO correction. Higher mean Strehl ratios and lower standard deviations are

desired. More detailed plots of the simulations run, linking effects of SNR and Greenwood

frequency, are found in Appendix A.
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Table 4.1: Averaged field-estimated Strehl ratios over all Greenwood frequencies and

SNR’s tested for the cases listed.

σ2
χ LS LSPV+1 LSPV+4 Histogram Iter. Probe Brent’s

0.04 0.5406 0.5416 0.5416 0.5416 0.5416 0.5416

0.5 0.3242 0.3844 0.3869 0.3876 0.3872 0.3846

1 0.0949 0.2047 0.2177 0.2183 0.2202 0.2134

Table 4.2: Field-estimated Strehl ratio standard deviation, averaged over all Greenwood

frequencies and SNR’s tested for the cases listed.

σ2
χ LS LSPV+1 LSPV+4 Histogram Iter. Probe Brent’s

0.04 0.0329 0.0322 0.0322 0.0322 0.0322 0.0322

0.5 0.0835 0.0498 0.0496 0.0470 0.0487 0.0488

1 0.0677 0.0647 0.0674 0.0625 0.0626 0.0646

Table 4.3: Field-estimated Strehl ratio normalized standard deviation, averaged over all

Greenwood frequencies and SNR’s tested for the cases listed.

σ2
χ LS LSPV+1 LSPV+4 Histogram Iter. Probe Brent’s

0.04 0.0628 0.0613 0.0613 0.0613 0.0613 0.0613

0.5 0.2581 0.1310 0.1295 0.1223 0.1267 0.1278

1 0.7162 0.3198 0.3152 0.2899 0.2881 0.3058
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4.2 Low SNR Reconstruction and Phase Discrepancies

Among the first observations made was in the initial weak turbulence testing. In

weak turbulence, there are no branch point effects present, and therefore φrot = 0 in the

absence of any noise effects. The expectation was to observe equivalent performance

between all reconstructors. However, a consistent performance improvement of all tested

PCO reconstructors was seen over the least squares reconstructor, specifically at the lowest

SNR’s tested. This was very much a surprise, as prior work hypothesized that the addition

of noise may be debilitating to the PCO technique [31]. This sparked a series of follow-up

investigations to explore what was going on. All tests performed verified the initial findings

that all the PCO reconstructors outperformed the least squares reconstructors in low-SNR

situations. The question then became: Why?

An initial theory was proposed by the author that was based on differing noise

propagation through the two reconstruction techniques. The hypothesis is based on the

idea that the least squares operator could actually amplify the SRI measurement noise such

that ∥∥∥φLS n

∥∥∥
2
≥ ‖φn‖2 (4.1)

where φLS n is the least squares propagated noise component, φn is the noise component

from the measurement process, and ‖ · ‖2 is the Frobenius norm [16]. This idea was formed

by calculating the condition number [16] of the least squares reconstruction matrix and

finding it to be roughly 15 – ignoring the suppressed reconstruction modes. Now relate this

to the PCO algorithm defined in Eq. (2.42):

φ̂PCO = φLS +W
[
φS RI − φLS

]
. (4.2)

The above form can be expanded in terms of all noise components involved:

φ̂PCO = φLS φ
+ φLS n +W

{
W

[
φ + φn

]
−

(
φLS φ

+ φLS n

)}
. (4.3)
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The theory proposes that the two φLS n terms cancel each other out in the PCO process,

leaving only φn contributing to the final reconstruction. Under the assumption of Eq. (4.1),

only having φn would be less of a degradation than φLS n . A rough analytical trace for

this theory was created, but it needed additional verification to justify some simplifications

made.

A simulation was written to model this process which proved the theory wrong. This

verification simulation models AO system behavior in steady-state closed-loop operation

by generating an irrotational test field (could be as simple as a plane wave) that has

a nearly flat wavefront. The mean field irradiance is scaled using the equations from

Sec. 3.1.3 to have an SNR of roughly 1.5. This field is sent through the SRI model to

add realistic measurement noise effects, and that field, φS RI , is sent through both a least

squares reconstructor and a simple LSPV+1 reconstructor. From these, the noise terms can

be extracted and examined.

Specifically, the simulation found that

φLS n = φn, (4.4)

which invalidated the author’s original theory for the PCO reconstructor performance

improvement. In hopes of gleaning more, additional realizations of noise were run,

and something unexpected was noted in a number of cases. Amongst other things, the

simulation plotted φLS n − φn, usually showing no difference. However, Figs. 4.1a and 4.1b

show two examples of what appeared to be branch points at first glance.

Yet, these are not branch points for a number of reasons. First, the field that was input

to the SRI had a uniform irradiance. One could argue that shot noise creates areas of zero

irradiance, which is a valid argument. The detected field irradiance can be calculated from

the SRI interferograms by Eq. (2.21), and Fig. 4.2 shows the estimated input irradiance

corresponding to the measurement of Fig. 4.1b. It is clear that areas of zero detected

photons are scattered all over the aperture, but there is no correlation to the anomalies
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observed in Fig. 4.1b. Since these effects do not seem to be caused by the input irradiance,

looking to the SRI phase measurement, a clue is found. Shown in Figs. 4.3a and 4.3b, the

points from Figs. 4.1a and 4.1b can be traced to points in equivalent locations within the

SRI phase that make transitions larger than π radians between adjacent subapertures due

to measurement noise. While examining φS RI , closer examination was given to both the

least squares and LSPV+1 reconstructed wavefronts, and it was clear that while the PCO

reconstructor successfully reconstructed the original phase, the least squares reconstruction

had anomalies at the locations of the sharp phase differences in φS RI .

To further examine this phenomenon, a second simulation was run that isolates the

noise generated large phase differences from the SRI. A hypothetical φS RI is generated that

is completely flat except for two adjacent center subapertures that are set to −0.9π and 0.9π,

as shown in Fig. 4.4a. Without the surrounding additional noise, this simulation exposes the

aperture-wide reconstruction effects due to large noise-induced adjacent phase difference.

Figure 4.4c shows the LSPV+1 reconstruction, matching the SRI wavefront with an extra

π piston shift from the PCO h term. On the other hand, the least squares reconstruction

clearly identifies the source of the phase anomalies evident in Fig. 4.1.

The φrot term from the PCO algorithm cancels out the least squares anomaly; however,

this exposes a misnomer in this case. The wrapped term in the PCO algorithm, which in a

noiseless case is equivalent to any rotational component in the phase function, can actually

be any phase components missed, or in this case artificially introduced by the least squares

reconstruction relative the SRI phase measurements. The author likens this to accounting

for slope discrepancies when using a Shack-Hartmann WFS. Since the SRI measures phase,

not wavefront gradients, the author terms this as accounting for the phase discrepancy. In

the case of the noise induced phase discrepancies, they are not actually rotational in nature.

As described in Sec. 2.3 a least squares generated operator cannot reconstruct rotational

phases. Further, Fig. 4.5 plots the gradients for one of these anomalies, where red represents
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a positive field and blue is negative. The author stresses these arguments to say these are

not so-called “noise-induced branch points”. They are not rotational, and they are actually

anomalies introduced by the least squares reconstruction that do not exist in the true phase

function.

Since these phase discrepancies result from noise creating artificially large adjacent

phase measurements on an otherwise nearly-flat wavefront, it is now clear why all PCO

algorithms outperform the least squares reconstructor when no branch points are present

and only at the very lowest SNR’s. The author’s original theory failed to explain why the

performance gain was only seen at SNR’s lower than five, as it predicted a lowered noise

propagations for any noise present. The new theory requires such low SNR’s to induce

the large adjacent phase measurement errors. If only using a least squares reconstructor in

these cases, the control system will attempt to conjugate these phase discrepancies that do

not exist in the true wavefront leading to potentially unstable AO performance.

The cause for the observed least squares behavior turns out to be an aliasing effect

of the wavefront gradients fed to the the least squares reconstructor. Section 4.5 presents

the research that led to this recent understanding. Any gradients larger than π radians are

assumed to be wrapping cuts; however these points are not wrapping cuts. So, the large

adjacent gradients are wrapped, but the surrounding gradients remain. This is the cause for

the phase discrepancy surrounding such points.

4.3 Closed-Loop Behavior of hopt

Pellizzari’s work found a numerical PDF approximation for hopt [31], which found

〈hopt〉 = 0. However, there is a very important difference between preceding research and

this work in the implementation of the PCO wrapping operator. Previously, the wrapping
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Figure 4.1: Different realizations of unexpected differences between LS noise term and

PCO noise term.
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Figure 4.2: Irradiance estimate of input SRI field from noise behavior simulation. This

corresponds to the measurement of Fig. 4.1b.
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Figure 4.3: SRI phase measurements of a tilted wavefront where SNR≈ 1.5. In the

subplots, (a) corresponds to Fig. 4.1a and (b) corresponds to Fig. 4.1b.

was performed by

W
[
φ
]
≡

Tan−1 {
imag

[
exp (i2πφ)

]
, real

[
exp (i2πφ)

]}
2π

, (4.5)

which is physically correct but not computationally efficient. Switching to a modulus

operator, this process can be implemented easily on most CPU’s and FPGA’s used for

AO control. This is simply written as

W
[
φ
]
≡ mod (φ, 2π) . (4.6)

Both methods are correct, but the wrapping window for Eq. (4.6) is now from 0–2π radians,

rather than -π–π radians. When this research began testing LSPV+1, based on Eq. (4.6), the

AO performance was terrible. After recalculating the PDF of hopt, it was obvious that the

PDF calculated by Pellizzari needs to be defined with respect to the wrapping window being

used. By shifting his entire PDF to be over the new wrapping window, 〈hopt〉 = π. It turns

out the initial implementation of LSPV+1 tested here, used the least optimal h, leading
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Figure 4.4: Simulation of low-SNR noise effects between least squares and LSPV+1

reconstructors.

Figure 4.5: Simplified wavefront gradient diagram of a noised induced phase anomaly. The

center two squares represent the central discrete pixels of the anomaly.
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to the poor results observed. This is an important lesson for practically implementing

these algorithms or anyone implementing a non-standard wrapping function for a PCO

application.

Over the course of this research, it was noted that the LSPV+1 reconstructor

demonstrated near equivalent AO performance to the more advanced PCO reconstructors

tested. The computational simplicity of LSPV+1 makes it a promising lead for high-speed

and low-latency AO. It was also noted that the LSPV+1 performance gap between the other

PCO algorithms widens as the Rytov number increases. Although the performance is still

very similar, as seen by Table 4.3, the increasing performance gap between LSPV+1 and

the other PCO reconstructors at σ2
χ = 1 prompted an investigation as to why.

LSPV+1 always uses h = 〈hopt〉, which in the weak Rytov case is more than

sufficient when no branch points are present. However, as the Rytov number increases and

additional rotational phase components are introduced, one can surmise that only having

one realization of φrot could be limiting in some cases. The previous research did not

show significant variations in the PDF of hopt as the Rytov number increased above weak

turbulence, perhaps due to the absence of noise effects. However, a series of simulations

were run to retest this idea with the hypothesis that the PDF of hopt broadened away from

〈hopt〉 as the Rytov number increased. To generate the PDF’s, LSPV+200 was run over

a series of one-second cases, each with increasing challenge for the AO system. For

each simulation, a histogram was generated of the hopt values chosen by the LSPV+200

algorithm to generate a rough PDF. Figures 4.6 and 4.7 show the simulation results with

the histograms as well as field estimated Strehl ratio plots overlaid with the normalized

hopt as a function of time. As the AO beacon conditions worsen, the histogram shows a

broadening of hopt’s PDF. All turbulence parameters showed a slight broadening effect of

the distribution, but increasing Rytov number is by far the dominant factor.
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The confirmed broadening of the hopt PDF explains why the LSPV+1–LSPV+4

performance gap widens as the atmospheric conditions worsen. This fact also may lend

to choosing a specific PCO reconstructor based on expected conditions. As the conditions

become increasingly difficult, particularly with respect to Rytov number, it may be more

beneficial to take the additional computational hit with one of the other PCO reconstructors.

4.4 Fades in Strong Turbulence

While debugging the reconstruction and AO system simulation, a mechanism was

implemented to record videos of many important system parameters as the system stepped

through time. Following the development phase, this capability was used to study the

overall behavior of the AO system when using a PCO wavefront reconstructor. This

additional work resulted in identifying the source of fades when using a PCO reconstructor

when a significant rotational phase is present in the input wavefronts.

At system startup, the WFS observes the fully aberrated beacon wavefronts, φ. At

this point, the complete rotational phase from any branch points reaches the WFS. When

the AO system switches on, the DM conjugates the reconstructed WFS field. Now, the

WFS senses only the residual wavefront error, φresid – not the fully aberrated wavefronts.

The control law maintains the DM commands at roughly the conjugate of the incoming

aberrations, but the wavefront reconstructor is no longer seeing the fully aberrated field.

As φresid flattens out, the PDF of hopt becomes increasingly centered about 〈hopt〉.

This was all known prior to the research presented here; however, additional insights

may be gleaned by thinking deeper into the process. In steady-state, closed-loop operation,

the residual wavefront error is near-zero. Any branch points and corresponding branch

cuts that are present within φ may not be visible in φresid, and even if they are partially

apparent, they would most likely be of reduced visibility due to partial compensation. In

this regime, the branch cut finding algorithm may easily miss cuts that are actually present

66



σ2
χ =0.488, d/r0 =0.5, SNR=60

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

F
ie
ld

E
st
im

a
ti
o
n
S
tr
eh
l

Field Estimation Strehl
normalized LSPV offset

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

h Offset [waves]

C
o
u
nt

σ2
χ =0.04, d/r0 =1, SNR=60

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [s]

F
ie
ld

E
st
im

a
ti
o
n
S
tr
eh
l

Field Estimation Strehl
normalized LSPV offset

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

1200

1400

1600

1800

2000

h Offset [waves]

C
o
u
nt

σ2
χ =0.488, d/r0 =0.5, SNR=5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

F
ie
ld

E
st
im

a
ti
o
n
S
tr
eh
l

Field Estimation Strehl
normalized LSPV offset

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000

h Offset [waves]

C
o
u
nt

Figure 4.6: LSPV+200 Strehl ratio and hopt plots over one second simulation runs to

evaluate the behavior of hopt’s PDF as atmospheric conditions change.
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Figure 4.7: LSPV+200 Strehl ratio and hopt plots over one second simulation runs to

evaluate the behavior of hopt’s PDF as atmospheric conditions change.

68



in the corrected field. The author poses a question as to what IWCL really means, since

IWCL was meant to be calculated over the fully aberrated wavefront, φ, not φresid.

So what is going on when a PCO algorithm changes hopt while in closed-loop

operation? Well, it depends primarily on the rotational effects present in the field; in other

words, the Rytov number. Starting the discussion with a weak Rytov number case, the

rotational component of the PCO reconstruction was seen to be almost always completely

zero, with the exception of any noise induced effects presented in Sec. 4.2. In this weak

turbulence case, hopt very rarely changes, and when it does change due to noise induced

phase anomalies, it has no effect on the overall system performance.

In the medium Rytov number cases simulated, similar behavior is noted. Figure 4.8

shows a plot of field-estimated Strehl ratio, overlaid with each frame’s hopt for an LSPV+4

reconstructor. In this regime, hopt changes frequently, but overall AO performance remains

unaffected. This initially diagreed with the author’s theories, as the PCO rotational

phase component was seen to have consistent notable content. However, the most recent

discoveries show that this content is not rotational in nature. The cause is discussed at

length in Sec. 4.5. Without a significant rotational component within the residual phase

error, hopt varies in a way to keep the PCO phase discrepancies within the wrapping window

and away from the wrapping boundaries. At a change in hopt, only the reconstructed

wavefront’s piston changes, but since piston is removed prior to sending DM commands

out, there is no performance impact. While there are a few exceptions, this is the primary

behavior observed in the medium Rytov number cases.

Things change with strong Rytov number cases. As Fig. 4.9 shows, any changes in

hopt mostly result in sharp fades. More specifically, the fades distinctly follow changes in

hopt. Using the video capability developed for debugging, it was noted that the tracking spot

shape is not effected at these fades but is shifted off-axis. This behavior was consistently

observed at the fades in Strehl ratio. It seemed that the change in hopt somehow propagates
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Figure 4.8: The top plot shows field estimated Strehl ratio and hopt over time with an
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realizations over the same time interval. This is in conditions of σ2
χ = 0.5, fg =40Hz,

d/r0 = 1/2.
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a change in tilt through the AO system, thus causing the fades. This prompted several

simulation tests, one of which lead to an explanation.

A number of AO simulations were rerun with the LSPV+4 reconstructor, this time

calculating the tilt components for each PCO rotational phase realization. Since hopt

seemed to be at the root of the behavior, the least squares reconstruction was ignored for

these tilt calculations. Figure 4.10 shows the results from the three Rytov cases. First to
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note is that the tilt components of the PCO rotational phase definitely differ as h is varied!

For the weak case, all rotational tilt components vanish as soon as the higher-order control

loop closes – as expected. In the medium case, the three most likely h-values produce

small, yet similar tilts. However, in the strong case, even after the higher-order control loop

engages, there is widely varying tilt components between each rotational phase realization.

This is the key.

In the strong Rytov case, when the PCO algorithm changes hopt, a new wavefront

tilt realization is reconstructed. When this propagates through the rest of the higher-order

control data path, described in Sec. 3.1.1, the final tilt-removal operator cuts out whatever

tilt component exists. To the tracking system, these changing tilts are certainly measurable.

This is the cause for the fades in Strehl ratio. While the higher-order correction of the

wavefronts do not suffer during the changes in hopt, it takes the tracking system roughly two

frames to account for the tilt changes from the high-order system. To explicitly demonstrate

this process, Appendix B traces a hypothetical rotational phase through the AO system.

4.4.1 Potential Fixes.

All the tilt components are known variables, and as such, a solution to prevent the

fades is certainly possible. In fact, there are likely a number of potential solutions. One

method would be to implement a feed-forward tilt-offloading path to the tracker from the

higher-order system. Another method is to allow the higher-order control system to correct

for some or all of the reconstructed tilt. At first, the author recalled the tilt coupling issues

presented in Sec. 3.1.1, but by lowering the control system gains, a stable state can be

reached. While this imposes larger stroke requirements on the deformable mirror, it is a

relatively simple controls problem compared to the feed-forward implementation with two

different operating frequencies.

The AFIT AO system model was modified to compare AO performance over

equivalent realizations of high Rytov turbulence with both a tilt coupled and decoupled
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Figure 4.10: Tilt magnitudes for each PCO rotational phase realization of a LSPV+4

reconstructor over time for weak, medium, and strong Rytov numbers. The higher-order

control system is seen to engage at t =0.008s.
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control system. The limitations of such a setup are made clear by selecting three

increasingly aggressive control gains. Figure 4.11 shows the results, where the left column

is decoupled and the right column is coupled. The gain starts at relatively conservative

points, giving good performance in each case. However, note there are no fades in the

coupled case, even as hopt changes! Increasing the gain, the decoupled performance

sharpens but the coupled performance begins to go unstable. Further increasing the gain,

the decoupled system still runs well, but the coupled system quickly drives itself unstable.

Note that this test in simulation allows for perfect component alignments. In reality there

will always be a slight misalignment between components and sensors. Because of this,

a zero DC gain controller would be required on both the tracker and higher-order control

system to implement a coupled tilt control setup.

This test verifies the theory on tilt propagation from the changing PCO rotational phase

realizations to the tracking system as the cause for the sharp fades previously observed with

these reconstructors. Further, suggestions for alleviating this are given.

4.5 High SNR Phase Discrepancies

A very recent modification to the simulations was to separate and plot φLS and φrot

as the AO frames increment. To the author’s great surprise, phase discrepancies similar

to those described in Sec. 4.2 were clearly apparent in high SNR conditions of all Rytov

numbers tested. This section describes the author’s initial tests and theories as to why

these phase discrepancies exist and what impact they have on AO performance. The author

stresses that these are only initial theories, and further work is needed to refine these ideas.

Figure 4.12 shows an example of the AO system in weak turbulence, with an SNR

of 60, prior to closing any of the correction loops. In such low Rytov number and high

SNR conditions the PCO rotational phase term was expected to have no content, but that

was not the case. The first clue came when the control loops started correcting in the weak
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Figure 4.11: Plots of AO performance with tilt decoupled (left column) and tilt coupled

(right column) between the two control systems. Each row implements an increasing

higher-order control gain.
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turbulence case. Within several frames, the PCO rotational component became flat – as we

had expected for the entire low-Rytov simulation, shown in Fig 4.13.

The primary differences with regard to the reconstruction process between the two

above cases are the magnitudes of the residual wavefront gradients. These phase effects

are also present in the higher Rytov number cases, but the low Rytov case excludes any

rotational field effects from the analysis. A number of simplified tests were conducted

to look at how high localized wavefront gradients propagate through the reconstruction

process. The first question was to explore how the SRI and reconstructors handle slopes of

increasing magnitude. As previously described, the slopes that the reconstructors operate

on are generated by shearing the raw SRI measurements in the x and y directions. To

account for wrapping cuts, the sheared slopes are wrapped to be within −π ≤ s < π radians.

This slope wrapping operation sets up the fundamental limit on slope magnitudes that

can be properly reconstructed by the least squares process. Any slopes between adjacent

subapertures larger than π radians will be interpreted, incorrectly, as a wrapping cut.

Figure 4.14 explores this idea with two tilted wavefronts in the first row of plots.

The corresponding SRI measurements of each tilted field are shown in the middle row,

and the final row shows each least squares reconstruction. The first column is correctly

reconstructed, but the second column, which exceeds the tilt sampling limit, has two

significant errors. First, the magnitude of tilt over the wavefront is greatly reduced from its

actual tilt. Second, the direction of tilt is reversed. The author hypothesizes that the degree

of each of these errors will change based on how much tilt is being passed into the system

– similar to aliasing in discrete signal theory [29].

Figure 4.15 extends the previous aliasing test closer to the atmospheric simulation

conditions. A flat wavefront with a sharp, linear slope down the center of the field

is created. The slope is at roughly 0.8π radians per-SRI subaperture. Additionally,
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Figure 4.12: Plots of AO state in conditions of σ2
χ = 0.04, d/r0 = 1. Both tracking and

high-order control loops are open.
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Figure 4.13: Plots of AO state in conditions of σ2
χ = 0.04, d/r0 = 1. Both tracking and

high-order control loops are closed.

78



Hypothetical Test Phase

50 100 150

20

40

60

80

100

120

140

160

180

(rad)

−20

−15

−10

−5

0

5

10

15

20

SRI Phase Measurement

5 10 15

2

4

6

8

10

12

14

16

18

(rad)

−2

−1

0

1

2

3

LS Reconstruction

5 10 15

2

4

6

8

10

12

14

16

18

(rad)

−20

−15

−10

−5

0

5

10

15

20

Hypothetical Test Phase

50 100 150

20

40

60

80

100

120

140

160

180

(rad)

−40

−30

−20

−10

0

10

20

30

40

SRI Phase Measurement

5 10 15

2

4

6

8

10

12

14

16

18

(rad)
−3

−2

−1

0

1

2

LS Reconstruction

5 10 15

2

4

6

8

10

12

14

16

18

(rad)

−10

−5

0

5

10

Figure 4.14: Inducing aliasing with the SRI and least squares reconstructor. The left

column shows roughly 0.9π radians of tilt between adjacent subapertures, while the right

column has roughly 1.5π radians of tilt between adjacent subapertures.

79



a central region of the slope is set at roughly 1.5π radians per subaperture. This is

similar to most of the atmospheric wavefront being within the slope sampling limit of

the reconstructor, with small regions that exceed it. The first observation made was that

the least squares reconstruction mostly resembles the input wavefront, but it is clear there

are some discrepancies, including aliasing over the high-slope region. In the initial tests,

only the LSPV+1 algorithm was used for comparison. While it does produce a correct

modulo-2π congruent reconstruction, the φrot realization created has sharp cuts that are less

than ideal for any continuous face-sheet DM. This observation motivated a test with the

LSPV+4 reconstructor, which calculated the most accurate reconstruction. To the PCO

algorithms, the sharp cuts from the LSPV+1 φrot realization are treated as if they were

branch cuts. In the LSPV+4 reconstructor, the cuts are penalized, giving a realization that

minimizes the sharp transitions.

The author claims these tests point out that sharp, localized wavefront gradients are

the cause for the observed phase discrepancies when reconstructing a high-SNR field. The

LSPV+4 rotational phase term from Fig. 4.15 has a high resemblance to the features seen

in the atmospheric simulations. While these features were not found in low-Rytov number

closed loop operation, they were found in the higher Rytov number closed loop simulations.

Figures 4.16 and 4.17 show closed loop operation for σ2
χ = 0.5 and σ2

χ = 1, respectively.

The strong turbulence plots show the system as it is initially closing the loop, and some

rotational phase due to branch points is likely present in addition to the phase anomalies

being discussed here.

These tests shed additional light on the increased performance drop between LSPV+1

and the other PCO reconstructors as the Rytov number reaches one. The broadening

of hopt’s PDF must be, in part, due to these phase discrepancies. Further, the previous

simulations performed by Pellizzari would likely not have encountered these issues with a

simulated SRI of over twice the subaperture density. While increasing the SRI subaperture
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Figure 4.15: Inducing aliasing with the SRI and least squares reconstructor. A tilt runs

down the center of the wavefront, and the very central portion exceeds the SRI tilt sampling

limit. This is traced through the SRI and various reconstructors.
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density is a potential solution to this behavior, one must consider the additional splitting

of light and its impact on SNR. The initial results shown here demonstrate an unintended

benefit of the PCO algorithm as it compensates for reconstruction errors due to localized

wavefront gradient aliasing.

4.6 Application to Beam Projection

All research up to this point regarding PCO-based wavefront reconstructors has been

studied with respect to one-way AO systems. Such one-way applications include, but are

not limited to, remote sensing and astronomy. Another class of applications involve dual-

path propagation, namely those which not only receive light, but also project compensated

outgoing beams. Beam projection applications include optical communication and laser

weapon systems. These applications typically involve more horizontal propagation paths,

thus entering the strong turbulence regime much more frequently than vertical path

applications. This section presents initial results and observations for a range of wavefront

correction techniques with respect to beam projection applications.

The author hypothesizes most of the same conclusions made for the single-path AO

problem hold true but introduces an alternative to intensity weighted cut length (IWCL)

for PCO reconstruction. The author hypothesizes that cut length (CL) is a better PCO

reconstruction metric for beam projection applications where the outgoing beam is not

amplitude modulated to match the received beacon field. While all PCO reconstructed

fields will be modulo-2π equivalent, different PCO variations differ in the placement of

detected branch cuts within the field. Assuming an ideal corrector, this does not actually

make a difference. However, when a continuous face-sheet DM is used, there will always

be a DM fitting error in trying to reproduce the sharp branch cuts.

For initial comparison of wavefront reconstruction techniques with respect to beam

projection applications, a simplified simulation was developed using tOSC’s WaveProp.
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Figure 4.16: AO system state during closed loop operation in conditions of σ2
χ = 0.5,

d/r0 = 1, SNR=60. LSPV+4 is the wavefront reconstructor.
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Figure 4.17: AO system state as the higher-order control loop is closing in conditions of

σ2
χ = 1, d/r0 = 1, SNR=60. LSPV+4 is the wavefront reconstructor.
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Again, an ideal point source beacon illuminates the turbulent path of interest, with a Rytov

number of one. The receive telescope is 40 centimeters in diameter, focused at the beacon

distance. An idealistic SRI senses the collimated wavefront (no fiber coupling or noise

effects), and an ideal DM applies the appropriate conjugation to the outgoing beam. The

ideal DM has no stroke limit, negating the need for a FSM or tracking system. No temporal

effects are included in this initial experiment. Instead, unique realizations of turbulent paths

are generated, through which the beacon propagates. For each turbulent realization, the AO

system senses the field and various reconstruction techniques calculate corrections for the

outgoing beam. Each of these pre-compensated beams are then back-propagated through

the turbulence to the beacon source plane, where the irradiance patterns are averaged over

all turbulence realizations for each reconstruction method. The author acknowledges the

lack of temporal effects will not paint a complete picture of expected AO performance.

However, this is an important first step to both develop a dual-path test simulation, as well

as compare general reconstructor performance in these difficult atmospheric conditions.

The following tests compare reconstruction performance of traditional least squares,

LSPV+20 using IWCL as a metric, LSPV+20 using CL as a metric, and Xphase as

developed by tOSC. LSPV+20 was chosen instead of LSPV+4 in order to more accurately

compare the PCO technique with respect to each metric function. For reference, ideal phase

conjugation and ideal field conjugation are also tested. The first round of simulation results

is shown in Fig. 4.18. To the author’s initial surprise there was no apparent difference

between the ideal phase conjugation, PCO methods, and Xphase. This points out an

important point: these reconstruction algorithms all produce modulo-2π equivalent results,

but each uses a different rotational realization in hopes of optimizing placement of any

branch cuts with respect to an expected DM fitting error. This initial simulation did not

include any DM inter-actuator coupling effects. Further, the SRI and DM were assumed to

have the same spatial resolution as the simulated fields themselves. Without any of these
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realistic effects, all of the above reconstruction methods gave exactly equivalent results.

The poor performance of the least squares reconstruction and great performance of the

field conjugations also serve as good sanity checks before moving forward.

The simulation was modified to include realistic SRI sampling and DM parameters

(except actuator stroke). As this introduces some subjectivity for the parameters chosen,

a range was evaluated to explore the current realistic parameter-space. Inter-actuator

couplings of both 10% and 20% were evaluated for DM’s of size 10 × 10, 19 × 19, and

32 × 32. The respective SRI subaperture arrays were 19 × 19, 37 × 37, and 63 × 63,

again, following the sampling recommendation set by Barchers [6]. The WFS to DM

command downsampling method was a matrix operator based on a pyramid convolution

three subapertures wide, only considering the active subapertures. The ideal phase and

field conjugation methods remain at the full field sampling density for comparison.

Again, 100 realizations of turbulence were run for each of the six DM setups described

above. The results of which are shown in Figs. 4.19-4.24. Additionally, Figs. 4.25 and 4.26

provide a visual example of the ‘best’ and ‘worst’ DM fits for an example turbulence

realization for each reconstructor. These initial results show some interesting behaviors;

although, not all good. Most notably, the 10 × 10 DM seems to outperform the higher

density DM’s. Upon reinspection of the simulation code, the AFIT DM setup was used –

including a guardband ring of DM actuators which is not used in the higher density DM

setups. While it is not definitive that the guardband was the cause for the apparent improved

performance, it is a difference that must not be included in future tests. Secondly, the

LSPV algorithms and Xphase often show higher peak on-axis power than the ideal phase

conjugation. The author hypothesizes this is a result of a constructive interference effect;

although, that is only a theory. One final concern upon viewing these results was the varying

power levels between each simulation case. In the initial code, the turbulence seeds were

set based on the computer clock – resulting in the observed behavior. For future work, the
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seeds are now set based on the trial number such that each DM simulation will use the same

set of turbulence realizations.

These initial results show the field conjugation performing best and least squares

worst. Beyond that, Xphase seems to slightly edge out LSPV+20 IWCL in most cases.

Surprisingly, the LSPV+20 using CL as the reconstruction metric underperformed the

IWCL metric. The author hypothesizes this is another interference effect at play, but is

uncertain on the precise means. However, before making too many conclusions based on

the results at hand, the author stresses the flaws pointed out in the preceding paragraph.

Further simulations are being conducted to form a better result-set for comparison.

Additionally, future simulations including temporal effects are crucial to better understand

this problem.
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Figure 4.18: Target-plane irradiance patterns, averaged over 100 turbulence realizations

with an ideal DM. The central circles show the diffraction limited spot size.
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Figure 4.19: Target-plane irradiance patterns using a 10 × 10 DM with 10% inter-actuator

coupling.
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Figure 4.20: Target-plane irradiance patterns using a 19 × 19 DM with 10% inter-actuator

coupling.
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Figure 4.21: Target-plane irradiance patterns using a 32 × 32 DM with 10% inter-actuator

coupling.
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Figure 4.22: Target-plane irradiance patterns using a 10 × 10 DM with 20% inter-actuator

coupling.
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Figure 4.23: Target-plane irradiance patterns using a 19 × 19 DM with 20% inter-actuator

coupling.

93



Ideal Field Conjugation

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(J/m^2)

0.5

1

1.5

2

2.5

Ideal Phase Conjugation

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(J/m^2)

0.2

0.4

0.6

0.8

1

Least Squares Reconstructed

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(J/m^2)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LSPV+20 using IWCL

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(J/m^2)

0.2

0.4

0.6

0.8

1

1.2

LSPV+20 using CL

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(J/m^2)

0.2

0.4

0.6

0.8

1

Xphase (tOSC)

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(J/m^2)

0.2

0.4

0.6

0.8

1

1.2

Figure 4.24: Target-plane irradiance patterns using a 32 × 32 DM with 20% inter-actuator

coupling.
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Figure 4.25: Example DM profiles using a 10 × 10 DM with 20% inter-actuator coupling.
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Figure 4.26: Example DM profiles using a 32 × 32 DM with 10% inter-actuator coupling.
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V. Conclusions

This chapter presents a summary of the research completed as part of this Master’s

work. Challenges overcome, key results, and future work are given. The research and

observations made here build upon the previous work of Pellizzari and Schmidt, where this

effort was aimed at transitioning their research towards a realistic implementation. In doing

so, many new discoveries were made in the hopes of extending current AO capabilities in

strong turbulence regimes.

5.1 Challenges Overcome

• Developed realistic AO system model. This was the crucial next step from the

previous research. A realistic SRI model was developed, incorporating frame-by-

frame fiber coupling effects, a first of its kind for this research. System radiometry

was modeled, allowing for meaningful shot noise, senor read noise, and quantization

noise effects. Care was given to correctly model the independent tilt and higher-

order control systems, including the complete higher-order data processing pipeline.

In doing so, data-flow optimizations were made specific to PCO-based wavefront

reconstruction and AO control.

• Complex, multi-dimensional parameter space. This research analyzed effects

of Rytov number, Fried’s parameter, Greenwood frequency, and SNR for each

wavefront reconstructor tested. This five dimensional parameter space created

hundreds of gigabytes of simulation results which had to be efficiently tracked and

managed. Running the simulations to explore the complete parameter space took

weeks, even utilizing several high performance computers. Given the simulation

requirements, significant development effort was given to optimize code. This

framework is now available for future research.
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• Bring AFIT AO hardware to an operational state. As this research began, AFIT’s

AO system was plagued with a variety of issues that led to unreliable performance.

Working in conjunction with the primary contractor, the author assisted in finding,

diagnosing, and correcting a number of software and hardware issues. The author

learned LabVIEW in order to become proficient with the hardware interfacing and

control code. Since no manuals were available, the author learned and wrote quick

guides for common procedures. A full-system optical alignment procedure was

developed, reducing the time required from 12 hours to only two. Unfortunately,

at the final stages of this research a circuit board failure rendered the DM inoperable

before any meaningful data could be taken. Initial AO system characterization results

were presented at the 2011 SPIE Defense, Sensing, and Security conference.

• Developed an ATS configuration change to allow high-Rytov simulations. In the

configuration from the contractor, the ATS could simulate high-Rytov number

conditions but only with prohibitively small r0’s. In the simulations performed the

ratio of DM actuator spacing to r0 was kept, at most, to one. However, in the original

configuration, the ATS could not maintain that ratio at σ2
χ = 1. The author developed

an optical modification that would allow much greater emulation capabilities in the

r0 : σ2
χ parameter space of interest to this research.

5.2 Key Results

• Demonstrated greatly improved strong turbulence AO performance in terms of both

mean Strehl and Strehl variance. The AO performance gains using a PCO wavefront

reconstructor over the traditional least squares reconstructor in terms of mean field

estimated Strehl ratio and Strehl ratio normalized standard deviation are summarized

in Table 5.1. Mean Strehl is a metric of absolute AO correction performance (higher

is better), and the Strehl standard deviation is a metric of correction stability (lower

is better). These results were presented at the 2012 IEEE Aerospace conference.
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Table 5.1: Aggregate AO performance gains of all PCO-based wavefront reconstructors

over the traditional least squares reconstructor.

σ2
χ Mean Strehl Normalized Strehl Standard Deviation

0.04 0.2% -2.4%

0.5 19.1% -50.6%

1 126.4% -57.6%

• Further reconstructor comparison under more realistic conditions. It turns out

LSPV+1 is hard to beat in terms of performance gain relative computations required

in most cases. However, as the Rytov number increases above roughly 0.5, a broader

search becomes important as the PDF of hopt was shown to broaden. The simplicity

of LSPV+4 with very similar performance to the more advanced reconstruction

algorithms proposed by Pellizzari make it a good choice in high-Rytov conditions.

• Identified cause of fades from PCO-based AO and demonstrated a potential solution.

When in closed-loop operation in strong turbulence, PCO algorithms can cause

short-term fades as hopt varies. These drops in Strehl are not caused by the higher-

order control law as much as different tilt components associated with each PCO

rotational realization. The tilt is removed from the higher-order corrections and

instantly dumped on the tracking system; causing the fades. One solution was found

by allowing tilt in the higher-order corrections with conservative controller gains.

This prevented the fades with a slight tradeoff in mean Strehl ratio. Unfortunately, a

realistic system with slight misalignments would require a zero-DC-gain control law

to implement a similar solution. Additionally, this puts higher stroke requirements

on the DM when tilt is being included. With this new understanding future work in

control design could help mitigate these fades based on the application requirements.
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• Demonstrated and developed theory on improved PCO performance in weak

turbulence, low SNR regimes. In weak turbulence, where no branch points are

present, a consistent performance improvement of the PCO reconstructors over

traditional least squares was found. Although the difference is small, this was

completely unexpected based on previous concerns of noise corrupting the PCO

process. A new theory proposed by the author shows in high-noise conditions,

least squares reconstructors can introduce phase anomalies to the AO corrections.

However, the PCO process removes these phase discrepancies introduced by the least

squares reconstruction. These findings will be presented at the 2012 SPIE Optics and

Photonics conference.

• Developed a set of theories regarding phase anomalies in high wavefront gradient

conditions. When localized wavefront phases being reconstructed from an SRI are

greater than π radians between adjacent subapertures, the least squares reconstructor

will alias, leading to a phase anomaly in the reconstructed field. This can be mitigated

using a higher density of SRI subapertures, at the cost of SNR. Alternatively, initial

results show the PCO corrects the phase anomalies introduced by the least squares

reconstruction.

• Formulated an optimized data flow for an AO system using PCO. Started by

diagnosing coupling between the high-order and tracking control systems when using

a PCO-based wavefront reconstructor. Since PCO reconstruction is not a single

matrix operation, decoupling tilt from the higher-order commands required a new

data flow process. The resulting process, illustrated in Fig. 3.4, minimizes matrix

multiplies while maximizing AO effectiveness.

• Conducted first beam projection simulations using PCO wavefront reconstruction

techniques. Conducted at the end of this research, this establishes a foundation
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for future efforts to investigate these novel reconstruction methods with respect

to beam projection applications. Although the initial simulation results identified

needed changes, initial observations indicate promise over traditional least squares

reconstruction. The identified flaws have since been fixed and follow-up simulation

results will be presented at the 2012 DEPS Beam Control Conference.

• Extensible AFIT AO system model for future research. The model is configurable

to varying levels of realism and AO capabilities. Allows isolation of the research

problem at hand without the difficulties of hardware work and the assumptions of

analytical work. This includes the first modeling of realistic fiber coupling to our

specific SRI optical setup – crucial to realistic noise modeling.

5.3 Future Work

• Hardware verification of simulation results. Unfortunately, the DM amplification

circuit board failed prior to beginning hardware testing and verification of the

simulation work presented here. This will be an essential step forward in verifying

all theories formulated thus far regarding PCO-based wavefront reconstruction and

control.

• Hardware verifications using real atmospheric turbulence. Following hardware

verification in the lab, the next step would be to test out the system performance

using real atmospheric turbulence. As the realism is increased, new challenges are

often discovered and additional validity is given to the theory.

• Additional verification of phase anomaly theories. A set of initial simplified tests

were made to form the theories presented on phase anomalies. More rigorous testing

to relate the theories to more realistic scenarios is needed.

• Further investigation into a practical tilt coupling between the control systems to

reduce fades. A more in-depth consideration of the tilt coupling effects between
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the tracking system and a higher-order system implementing a PCO wavefront

reconstructor is needed. A zero-DC-gain controller is required to account for realistic

component misalignments, which was not implemented here. Another alternative

could be a feed-forward tilt-offloading between the two control systems as h is varied.

• Investigate adaptive controlling techniques with a PCO-based reconstructor. Promis-

ing improvements in AO performance by Gibson [26] and Poyneer [32] using adap-

tive AO control have been applied towards traditional weak turbulence techniques.

Investigation as to whether these algorithms would work with the PCO non-unique

rotational phase component would be needed.

• Effects of SRI performance with respect to platform vibrations. Moving the SRI out

of a lab setup could reduce the fringe stability and thus the fidelity of the initial SRI

wrapped measurements. This could be crudely simulated by disturbing the lab bench

without requiring transportation of the system outside the lab.

• Further previous work on the hybrid SRI–Shack-Hartmann WFS using the simulation

model created here. The simulation model developed as part of this research would

be an excellent and easily extended platform on which to further previous work

in designing an effective hybrid WFS. This may involve dynamic power splitting,

comparative wavefront reconstruction, and more complex control techniques. The

range of investigations and potential improvements are extensive, and this would be

the first detailed test of a realistic implementation without the issues involved in full

hardware integration.

• Further thought into IWCL and CL metrics in the PCO algorithms that operate

over the residual phase error, as opposed to the fully aberrated field. In steady-

state closed loop operation, the wavefront reconstructors do not observe the fully

aberrated beacon phase. Rotational phase effects, including branch cuts, will be of

102



reduced visibility – often to the point where the branch cuts are below the threshold

for detecting them at all. Only as the turbulence evolves in time are features visible,

yet still not completely visible. These metrics do improve PCO performance with

respect to the aliasing phase anomalies, but the author questions whether this is the

best way to evaluate the “goodness” of a particular reconstruction when operating in

closed loop.
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Appendix A: Detailed Simulation Results

The following plots show the compiled simulation results for each reconstructor over

all conditions tested. Each grid-point represents a simulated one second AO run. Note that

the simulations with higher Greenwood frequencies will run over many more Greenwood

periods than the lower Greenwood frequency cases. Unfortunately, it would have been

computationally prohibitive to run all of the low-Greenwood cases long enough to hold the

number of Greenwood periods constant. While this is a definite compromise, I think the

usefulness of the results is still strong.

The left column is the mean field-estimated Strehl, calculated from after the higher-

order control system is enabled through the end of each simulation run. The right column

shows normalized standard deviation of the prior field-estimated Strehl ratio. This second

statistic provides an idea for the system stability, where lower is better. The color axes have

been fixed for each section below for easier comparison.
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Figure A.1: Least-Squares Reconstructor. Weak Turbulence: σ2
χ = 0.04, d/r0 = 1
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Figure A.2: LSPV+1 Reconstructor. Weak Turbulence: σ2
χ = 0.04, d/r0 = 1
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Figure A.3: LSPV+4 Reconstructor. Weak Turbulence: σ2
χ = 0.04, d/r0 = 1
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Figure A.4: Histogram Reconstructor. Weak Turbulence: σ2
χ = 0.04, d/r0 = 1
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Figure A.5: Iterative Probing Reconstructor. Weak Turbulence: σ2
χ = 0.04, d/r0 = 1
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Figure A.6: Golden-Ratio Reconstructor. Weak Turbulence: σ2
χ = 0.04, d/r0 = 1
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Figure A.7: Least-Squares Reconstructor. Medium Turbulence: σ2
χ = 0.5, d/r0 = 1
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Figure A.8: LSPV+1 Reconstructor. Medium Turbulence: σ2
χ = 0.5, d/r0 = 1
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Figure A.9: LSPV+4 Reconstructor. Medium Turbulence: σ2
χ = 0.5, d/r0 = 1
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Figure A.10: Histogram Reconstructor. Medium Turbulence: σ2
χ = 0.5, d/r0 = 1
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Figure A.11: Iterative Probing Reconstructor. Medium Turbulence: σ2
χ = 0.5, d/r0 = 1
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Figure A.12: Golden-Ratio Reconstructor. Medium Turbulence: σ2
χ = 0.5, d/r0 = 1
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Figure A.13: Least-Squares Reconstructor. Strong Turbulence: σ2
χ = 1, d/r0 = 1
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Figure A.14: LSPV+1 Reconstructor. Strong Turbulence: σ2
χ = 1, d/r0 = 1
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Figure A.15: LSPV+4 Reconstructor. Strong Turbulence: σ2
χ = 1, d/r0 = 1
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Figure A.16: Histogram Reconstructor. Strong Turbulence: σ2
χ = 1, d/r0 = 1
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Figure A.17: Iterative Probing Reconstructor. Strong Turbulence: σ2
χ = 1, d/r0 = 1
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Figure A.18: Golden-Ratio Reconstructor. Strong Turbulence: σ2
χ = 1, d/r0 = 1
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Appendix B: PCO Rotational Phase Tilt Propagation

This appendix presents a simple simulation tracing a rotational wavefront through the

higher-order data path. It is related to how the tracking system perceives the wavefront tilt

both before and after the higher-order corrections are applied.

The simulation starts with the rotational phase shown in Fig. B.1, with a uniform

irradiance across the entire field. For this example, the wavefront sensor is idealized,

giving no sensing errors or noise effects. The least squares reconstruction is also shown

and is mostly flat as discussed in Sec. 2.3. Note that to the tracker, the rotational phase

does not have any tilt. Figure B.2 shows the tracker spot for the uncorrected input field. It

has a doughnut-like shape, but it is centered on the sensor array.

The four PCO rotational reconstructions are plotted in Fig. B.3. In each rotational

realization, a tilt component is defined by the location of the branch cut. It is important

to distinguish this tilt component from the tilt component viewable by the tracker. The tilt

component with respect to the higher-order system is defined by the tilt-removal operator

from Sec. 3.1.1. To this operator, each rotational realization has a tilt component as shown

in Fig. B.4. The tilt-removal operator is applied to all four rotational realizations, and the

resulting outputs are applied to a DM. Sending the original rotational field onto each DM

realization, and then looking again at what the tracker would see exposes an apparent shift

in each of the tracker spots. Figure B.5 plots each tracker output. Note that the spots are

no longer doughnut-like, so the higher-order phase aberrations were correctly compensated.

However, the tilt components removed from each rotational realization, not only are visibly

different, but they clearly propagate to the tracking system. Unfortunately, it does take a

finite amount of time for the tracking system to react to these changes. That is the cause of

the fades when hopt changes in a high Rytov environment.
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Figure B.1: A hypothetical rotational phase (left), and its corresponding least squares

reconstruction (right).
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Figure B.2: The tracker image of the input field, from Fig. B.1.
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over the rotational field from Fig. B.1.
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of Fig. B.3.

117



Tracker Spot for h = 0

(Tpe)
0

2

4

6

8

10

12

14

16

18

Tracker Spot for h = π/2

(Tpe)
0

2

4

6

8

10

12

14

16

18

Tracker Spot for h = π

(Tpe)

2

4

6

8

10

12

14

16

18

Tracker Spot for h = 3π/2

(Tpe)
0

2

4

6

8

10

12

14

16

18
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from each rotational phase realization of Fig. B.3.
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